Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals

被引:29
作者
Le Dac Tuyen [1 ,2 ]
Liu, An Chi [1 ]
Huang, Chia-Chi [3 ]
Tsai, Pei-Cheng [1 ]
Lin, Jian Hung [1 ]
Wu, Chin-Wei [3 ]
Chau, Lai-Kwan [3 ]
Yang, Tzyy Schiuan [3 ]
Le Quoc Minh [4 ]
Kan, Hung-Chih [1 ]
Hsu, Chia Chen [1 ,5 ]
机构
[1] Natl Chung Cheng Univ, Dept Phys, Chiayi 621, Taiwan
[2] Hanoi Univ Min & Geol, Dept Phys, Hanoi, Vietnam
[3] Natl Chung Cheng Univ, Dept Chem & Biochem, Chiayi 621, Taiwan
[4] VAST Vietnam, Inst Mat Sci, Hanoi, Vietnam
[5] Natl Chung Cheng Univ, Grad Inst Optomechatron, Chiayi 621, Taiwan
关键词
METAL NANOPARTICLES; SILVER ELECTRODE; SPECTROSCOPY; SPECTRA; DEPENDENCE; SUBSTRATE; FIELDS; ARRAYS; SIZE;
D O I
10.1364/OE.20.029266
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a novel type of surface-enhanced Raman scattering (SERS) substrate constituted of a 3-dimensinal polymeric inverse opal (IO) photonic crystal frame with gold nanorods (Au-NRs) decorating on the top layer. This substrate employs resonant excitation as well as constructive backward scattering of Raman signals to produce large enhancement of SERS output. For the incoming excitation, Au-NRs with appropriate aspect ratio were adopted to align their longitudinal localized surface plasmon band with the excitation laser wavelength. For the outgoing SERS signal, the spectral position of the photonic band gap was tuned to reflect Raman-scattered light constructively. This SERS substrate produces not only strong but also uniform SERS output due to the well control of Au-NRs distribution by the periodic IO structure, readily suitable for sensing applications. (C) 2012 Optical Society of America
引用
收藏
页码:29266 / 29275
页数:10
相关论文
共 35 条
[1]   The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface [J].
Atkin, R ;
Craig, VSJ ;
Wanless, EJ ;
Biggs, S .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2003, 266 (02) :236-244
[2]   Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals [J].
Baumberg, JJ ;
Kelf, TA ;
Sugawara, Y ;
Cintra, S ;
Abdelsalam, ME ;
Bartlett, PN ;
Russell, AE .
NANO LETTERS, 2005, 5 (11) :2262-2267
[3]   PLASMA RESONANCE ENHANCED RAMAN-SCATTERING BY ADSORBATES ON GOLD COLLOIDS - THE EFFECTS OF AGGREGATION [J].
BLATCHFORD, CG ;
CAMPBELL, JR ;
CREIGHTON, JA .
SURFACE SCIENCE, 1982, 120 (02) :435-455
[4]   Labeled gold nanoparticles immobilized at smooth metallic substrates: Systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering [J].
Driskell, Jeremy D. ;
Lipert, Robert J. ;
Porter, Marc D. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (35) :17444-17451
[5]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166
[6]   Genetically Engineered Plasmonic Nanoarrays [J].
Forestiere, Carlo ;
Pasquale, Alyssa J. ;
Capretti, Antonio ;
Miano, Giovanni ;
Tamburrino, Antonello ;
Lee, Sylvanus Y. ;
Reinhard, Bjoern M. ;
Dal Negro, Luca .
NANO LETTERS, 2012, 12 (04) :2037-2044
[7]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22
[8]   Electromagnetic fields around silver nanoparticles and dimers [J].
Hao, E ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01) :357-366
[9]   Surface-enhanced Raman spectroscopy [J].
Haynes, CL ;
McFarland, AD ;
Van Duyne, RP .
ANALYTICAL CHEMISTRY, 2005, 77 (17) :338A-346A
[10]   Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration [J].
Huang, Chia-Chi ;
Huang, Chen-Han ;
Kuo, I-Ting ;
Chau, Lai-Kwan ;
Yang, Tzzy-Schiuan .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2012, 409 :61-68