Comparative study on the properties of ZnO nanowires and nanocrystalline thin films

被引:6
作者
Broitman, E. [1 ]
Bojorge, C. [2 ]
Elhordoy, F. [3 ,4 ]
Kent, V. R. [3 ,4 ]
Zanini Gadioli, G. [5 ]
Marotti, R. E. [3 ,4 ]
Canepa, H. R. [2 ]
Dalchiele, E. A. [3 ,4 ]
机构
[1] Linkoping Univ, IFM, Thin Film Phys Div, SE-58183 Linkoping, Sweden
[2] CITEDEF CONICET, CINSO, Villa Martelli, Argentina
[3] UdelaR, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
[4] UdelaR, Fac Ingn, CINQUIFIMA, Montevideo 11000, Uruguay
[5] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
关键词
ZnO; ZnO nanowires; Nanocrystalline ZnO; Sol gel; Water adsorption; WATER-ADSORPTION; ELECTRODEPOSITION; NANOSTRUCTURES; GROWTH;
D O I
10.1016/j.surfcoat.2012.10.015
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructural, morphological, optical and water-adsorption properties of nanocrystalline ZnO thin films and ZnO nanowires were studied and compared. The ZnO thin films were obtained by a sol-gel process, while the ZnO nanowires were electrochemically grown onto a ZnO sol-gel spin-coated seed layer. Thin films and nanowire samples were deposited onto crystalline quartz substrates covered by an Au electrode, able to be used in a quartz crystal microbalance. X-ray diffraction measurements reveal in both cases a typical diffraction pattern of ZnO wurtzite structure. Scanning electron microscopic images of nanowire samples show the presence of nanowires with hexagonal sections, with diameters ranging from 30 to 90 nm. Optical characterization reveals a bandgap energy of 3.29 eV for the nanowires and 3.35 eV for the thin films. A quartz crystal microbalance placed in a vacuum chamber was used to quantify the amount and kinetics of water adsorption onto the samples. Nanowire samples, which have higher surface areas than the thin films, adsorb significantly more water. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 46 条
  • [21] Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires
    Li, Yanbo
    Della Valle, Florent
    Simonnet, Mathieu
    Yamada, Ichiro
    Delaunay, Jean-Jacques
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (02)
  • [22] Recent advances in ZnO materials and devices
    Look, DC
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 80 (1-3): : 383 - 387
  • [23] Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells
    Lupan, O.
    Guerin, V. M.
    Tiginyanu, I. M.
    Ursaki, V. V.
    Chow, L.
    Heinrich, H.
    Pauporte, T.
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2010, 211 (01) : 65 - 73
  • [24] Characterization of ZnO and ZnO:Al thin films deposited by the sol-gel dip-coating technique
    Marotti, R. E.
    Bojorge, C. D.
    Broitman, E.
    Canepa, H. R.
    Badan, J. A.
    Dalchiele, E. A.
    Gellman, A. J.
    [J]. THIN SOLID FILMS, 2008, 517 (03) : 1077 - 1080
  • [25] Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential
    Marotti, RE
    Guerra, DN
    Bello, C
    Machado, G
    Dalchiele, EA
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2004, 82 (1-2) : 85 - 103
  • [26] Water adsorption on ZnO(1010): from single molecules to partially dissociated monolayers
    Meyer, B
    Rabaa, H
    Marx, D
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (13) : 1513 - 1520
  • [27] Density-functional study of the structure and stability of ZnO surfaces
    Meyer, B
    Marx, D
    [J]. PHYSICAL REVIEW B, 2003, 67 (03)
  • [28] Microstracture and gas-sensing properties of sol-gel ZnO thin films
    Musat, V.
    Rego, A. M.
    Monteiro, R.
    Fortunato, E.
    [J]. THIN SOLID FILMS, 2008, 516 (07) : 1512 - 1515
  • [29] ZnO: growth, doping & processing
    Norton, D. P.
    Heo, Y. W.
    Ivill, M. P.
    Ip, K.
    Pearton, S. J.
    Chisholm, M. F.
    Steiner, T.
    [J]. MATERIALS TODAY, 2004, 7 (06) : 34 - 40
  • [30] Ozgur U., 2001, APPL PHYS REV, V98