Control and Circuit Techniques to Mitigate Partial Shading Effects in Photovoltaic Arrays

被引:357
作者
Bidram, Ali [1 ]
Davoudi, Ali [1 ]
Balog, Robert S. [2 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76011 USA
[2] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2012年 / 2卷 / 04期
基金
美国国家科学基金会;
关键词
Impedance matching; maximum power point tracking (MPPT); partial shading; photovoltaic (PV) systems; solar arrays; POWER POINT TRACKING; PV MODULE; MPPT METHOD; SYSTEM; COMPENSATION; OPTIMIZATION; PERFORMANCE; CONNECTION; CONVERTERS; ALGORITHM;
D O I
10.1109/JPHOTOV.2012.2202879
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Partial shading in photovoltaic (PV) arrays renders conventional maximum power point tracking (MPPT) techniques ineffective. The reduced efficiency of shaded PV arrays is a significant obstacle in the rapid growth of the solar power systems. Thus, addressing the output power mismatch and partial shading effects is of paramount value. Extracting the maximum power of partially shaded PV arrays has been widely investigated in the literature. The proposed solutions can be categorized into four main groups. The first group includes modified MPPT techniques that properly detect the global MPP. They include power curve slope, load-line MPPT, dividing rectangles techniques, the power increment technique, instantaneous operating power optimization, Fibonacci search, neural networks, and particle swarm optimization. The second category includes different array configurations for interconnecting PV modules, namely series-parallel, total-cross-tie, and bridge-link configurations. The third category includes different PV system architectures, namely centralized architecture, series-connected microconverters, parallel-connected microconverters, and microinverters. The fourth category includes different converter topologies, namely multilevel converters, voltage injection circuits, generation control circuits, module-integrated converters, and multiple-input converters. This paper surveys the proposed approaches in each category and provides a brief discussion of their characteristics.
引用
收藏
页码:532 / 546
页数:15
相关论文
共 87 条
  • [71] Picault D., 2010, Proc. 9th Int. Conf. Environ. Electr. Eng, P37
  • [72] Poshtkouhi S, 2011, APPL POWER ELECT CO, P41, DOI 10.1109/APEC.2011.5744573
  • [73] Investigation of the performance of a photovoltaic AC module
    Prapanavarat, C
    Barnes, M
    Jenkins, N
    [J]. IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2002, 149 (04) : 472 - 478
  • [74] Qi Zhang, 2009, 2009 IEEE 6th International Power Electronics and Motion Control Conference, P2130, DOI 10.1109/IPEMC.2009.5157752
  • [75] Multilevel inverters:: A survey of topologies, controls, and applications
    Rodríguez, J
    Lai, JS
    Peng, FZ
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2002, 49 (04) : 724 - 738
  • [76] Experimental results of controlled PV module for building integrated PV systems
    Roman, E.
    Martinez, V.
    Jimeno, J. C.
    Alonso, R.
    Lbanez, P.
    Elorduizapatarietxe, S.
    [J]. SOLAR ENERGY, 2008, 82 (05) : 471 - 480
  • [77] Intelligent PV module for grid-connected, PV systems
    Roman, Eduardo
    Alonso, Ricardo
    Ibanez, Pedro
    Elorduizapatarietxe, Sabino
    Goitia, Damian
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (04) : 1066 - 1073
  • [78] Safari A, 2011, 2011 IEEE REGION 10 CONFERENCE TENCON 2011, P944, DOI 10.1109/TENCON.2011.6129249
  • [79] Simulation and Hardware Implementation of Incremental Conductance MPPT With Direct Control Method Using Cuk Converter
    Safari, Azadeh
    Mekhilef, Saad
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (04) : 1154 - 1161
  • [80] Saranrom Wuttichai, 2011, 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand - Conference 2011, P760