Convergence and Optimality of the Adaptive Nonconforming Linear Element Method for the Stokes Problem

被引:27
作者
Hu, Jun [1 ,2 ]
Xu, Jinchao [2 ,3 ,4 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[4] Penn State Univ, Dept Math, University Pk, PA 16801 USA
基金
美国国家科学基金会;
关键词
Adaptive finite element method; Convergence; Optimality; The Stokes problem; POSTERIORI ERROR CONTROL; UNIFYING THEORY; ESTIMATORS;
D O I
10.1007/s10915-012-9625-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the convergence and optimality of a standard adaptive nonconforming linear element method for the Stokes problem. After establishing a special quasi-orthogonality property for both the velocity and the pressure in this saddle point problem, we introduce a new prolongation operator to carry through the discrete reliability analysis for the error estimator. We then use a specially defined interpolation operator to prove that, up to oscillation, the error can be bounded by the approximation error within a properly defined nonlinear approximate class. Finally, by introducing a new parameter-dependent error estimator, we prove the convergence and optimality estimates.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 43 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]  
[Anonymous], RES REPORT
[3]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[4]   An adaptive uzawa FEM for the stokes problem:: Convergence without the inf-sup condition [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1207-1229
[5]   An optimally convergent adaptive mixed finite element method [J].
Becker, Roland ;
Mao, Shipeng .
NUMERISCHE MATHEMATIK, 2008, 111 (01) :35-54
[6]   QUASI-OPTIMALITY OF ADAPTIVE NONCONFORMING FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS [J].
Becker, Roland ;
Mao, Shipeng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :970-991
[7]   A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY [J].
Becker, Roland ;
Mao, Shipeng ;
Shi, Zhongci .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4639-4659
[8]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[9]   QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD [J].
Bonito, Andrea ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :734-771
[10]  
Brenner S. C., 2007, MATH THEORY FINITE E