Frechet algebras, formal power series, and automatic continuity

被引:4
作者
Patel, S. R. [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Frechet algebra of power series; Arens-Michael representation; Loy's condition (E); automatic continuity;
D O I
10.4064/sm187-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all those commutative Frechet algebras which may be continuously embedded in the algebra C[[X]] in such a way that they contain the polynomials. It is shown that these algebras (except C[[X]] itself) always satisfy a certain equicontinuity condition due to Loy. Using this result, some applications to the theory of automatic continuity are given; in particular, the uniqueness of the Frechet algebra topology for such algebras is established.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 17 条
[1]  
Allan GR, 1996, STUD MATH, V121, P277
[2]  
ALLAN GR, 1972, P LOND MATH SOC, V25, P329
[3]  
Allan GR, 1996, STUD MATH, V119, P271
[4]  
Arens R., 1952, PAC J MATH, V2, P455, DOI [10.2140/pjm.1952.2.455, DOI 10.2140/PJM.1952.2.455]
[5]   On Frechet algebras of power series [J].
Bhatt, SJ ;
Patel, SR .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (01) :135-148
[6]  
Carboni G, 2000, STUD MATH, V138, P265
[7]  
Dales H. G., 2000, LONDON MATH SOC MONO, V24
[8]  
Dales H.G., 1978, B LOND MATH SOC, V10, P129, DOI DOI 10.1112/BLMS/10.2.129
[9]  
HUSAIN T, 1991, ORTHOGONAL SCHAUDER