Some inequalities involving the polygamma functions

被引:1
作者
Liang, Lichun [1 ]
Zhao, Bin [1 ]
Li, Aibing [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling, Shaanxi, Peoples R China
关键词
Polygamma functions; Inequalities; Psi function; Star-shaped functions; Superadditive functions; MONOTONIC FUNCTIONS; SHARP INEQUALITIES; GAMMA-FUNCTION; DIGAMMA; PSI;
D O I
10.1186/s13660-019-1999-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n(x)=(-1)n-1(n)(x), where (n)(x) are the polygamma functions. We determine necessary and sufficient conditions for the monotonicity and convexity of the function F(x;,)=ln(exp((x+))n(x))-ln(n-1)!max(0,-) for and R, where (x) is the psi function. Consequently, this yields not only some new inequalities for the polygamma functions, but also new star-shaped and superadditive functions involving them. In addition, we improve a well-known mean-value inequality for the polygamma functions.
引用
收藏
页数:15
相关论文
共 39 条
[1]   On some inequalities for the gamma and psi functions [J].
Alzer, H .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :373-389
[2]   Sharp inequalities for the digamma and polygamma functions [J].
Alzer, H .
FORUM MATHEMATICUM, 2004, 16 (02) :181-221
[3]   Inequalities for the polygamma functions [J].
Alzer, H ;
Wells, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) :1459-1466
[4]   A power mean inequality for the gamma function [J].
Alzer, H .
MONATSHEFTE FUR MATHEMATIK, 2000, 131 (03) :179-188
[5]  
Alzer H., 2001, Aequationes Math., V61, P151
[6]   INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC-FUNCTIONS [J].
ANDERSON, GD ;
BARNARD, RW ;
RICHARDS, KC ;
VAMANAMURTHY, MK ;
VUORINEN, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (05) :1713-1723
[7]  
[Anonymous], 1965, Handbook of mathematical functions dover publications
[8]  
Artin E., 1964, The Gamma Function
[9]  
BATIR N, 2005, J INEQUAL PURE APPL, V6
[10]  
Batir N., 2013, J INEQUAL PURE APPL, V5