Predictive Modelling and Optimization of Machining Parameters to Minimize Surface Roughness using Artificial Neural Network Coupled with Genetic Algorithm

被引:111
作者
Kant, Girish [1 ]
Sangwan, Kuldip Singh [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Mech Engn, Pilani 333031, Rajasthan, India
来源
15TH CIRP CONFERENCE ON MODELLING OF MACHINING OPERATIONS (15TH CMMO) | 2015年 / 31卷
关键词
Roughness; Artificial neural network; Genetic Algorithm; Optimization; Predictive modelling; CUTTING CONDITIONS; POWER-CONSUMPTION; TEMPERATURE; STRESSES; STEEL;
D O I
10.1016/j.procir.2015.03.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
genetic algorithm - as an alternative to conventional approaches in predicting the optimal value of machining parameters leading to minimum surface roughness. A real machining experiment has been referred in this study to check the capability of the proposed model for prediction and optimization of surface roughness. The results predicted by the proposed model indicate good agreement between the predicted values and experimental values. The analysis of this study proves that the proposed approach is capable of determining the optimum machining parameters. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:453 / 458
页数:6
相关论文
共 22 条
[1]   Recent advances in modelling of metal machining processes [J].
Arrazola, P. J. ;
Oezel, T. ;
Umbrello, D. ;
Davies, M. ;
Jawahir, I. S. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2013, 62 (02) :695-718
[2]   Predicting surface roughness in machining: a review [J].
Benardos, PG ;
Vosniakos, GC .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2003, 43 (08) :833-844
[3]   Approach to optimization of cutting conditions by using artificial neural networks [J].
Cus, F ;
Zuperl, U .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 173 (03) :281-290
[4]   Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models [J].
Davim, J. Paulo ;
Gaitonde, V. N. ;
Karnik, S. R. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 205 (1-3) :16-23
[5]  
Feng CX, 2003, IIE TRANS, V35, P11, DOI [10.1080/07408170304433, 10.1080/07408170390116634]
[6]   Predictive Modeling for Power Consumption in Machining using Artificial Intelligence Techniques [J].
Kant, Girish ;
Sangwan, Kuldip Singh .
12TH GLOBAL CONFERENCE ON SUSTAINABLE MANUFACTURING - EMERGING POTENTIALS, 2015, 26 :403-407
[7]   Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining [J].
Kant, Girish ;
Sangwan, Kuldip Singh .
JOURNAL OF CLEANER PRODUCTION, 2014, 83 :151-164
[8]   Predictive Modeling of Turning Operations using Response Surface Methodology [J].
Kant, Girish ;
Rao, Vaibhav V. ;
Sangwan, K. S. .
MECHATRONICS AND COMPUTATIONAL MECHANICS, 2013, 307 :170-173
[10]   Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing [J].
Kovac, P. ;
Rodic, D. ;
Pucovsky, V. ;
Savkovic, B. ;
Gostimirovic, M. .
JOURNAL OF INTELLIGENT MANUFACTURING, 2013, 24 (04) :755-762