Feature Space Reduction for Single Trial EEG Classification based on Wavelet Decomposition

被引:0
|
作者
Shahtalebi, Soroosh [1 ]
Mohammadi, Arash [1 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ H3G 1M8, Canada
来源
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2019年
关键词
Brain-computer Interface (BCI); Riemannian Manifold Learning; Wavelet Transforms;
D O I
10.1109/embc.2019.8856340
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In contrary to recent signal/information processing advancements, human brain remains the most intriguing signal processing unit in existence with inconceivable capabilities to fuse various multi-modal signals, adaptively and in real-time fashion. To connect brain with the outer world, brain computer interfacing (BCI) via Electroencephalography (EEG) signals has received extensive attention. Extracting informative and discriminating features from EEG signals and decomposing the recorded signals into their underlying components is believed to yield compromising results. Different algorithms, therefore, are recently proposed combining signal decomposition techniques (e.g., spectral filterbanks, and Wavelet decomposition) with feature extracting methodologies (e.g., common spatial patterns (CSP), and Riemannian manifold learning). Although coupling filterbanks and Wavelet with the CSP has been investigated, to best of our knowledge, the potentials of coupling Wavelet with Riemannian manifold learning are not yet studied. The paper addresses this gap. In particular, we propose a level-based classification approach that couples the Wavelet decomposition with Riemannian manifold spatial learning (WvRiem). In the proposed WvRiem framework, the EEG signals are decomposed into several components (levels) and then spatial filtering via Riemannian manifold learning is performed on the best level which yields the most discriminating features. The proposed WvRiem is evaluated on the BCI Competition IV2 alpha dataset and noticeably outperforms its counterparts.
引用
收藏
页码:7161 / 7164
页数:4
相关论文
共 50 条
  • [1] Single-Trial EEG Classification via Orthogonal Wavelet Decomposition-Based Feature Extraction
    Qi, Feifei
    Wang, Wenlong
    Xie, Xiaofeng
    Gu, Zhenghui
    Yu, Zhu Liang
    Wang, Fei
    Li, Yuanqing
    Wu, Wei
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [2] A new method of EEG classification with feature extraction based on wavelet packet decomposition
    Wang, Deng
    Miao, Duo-Qian
    Wang, Rui-Zhi
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2013, 41 (01): : 193 - 198
  • [3] EEG feature extraction based on wavelet decomposition
    Hu, Jian-feng
    Mu, Zhen-dong
    Yin, Jing-hai
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 2023 - 2026
  • [4] Wavelet-based feature extraction for EEG classification
    Dixon, TL
    Livezey, GT
    PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 1003 - 1004
  • [5] EEG-Based Emotion Classification with Wavelet Entropy Feature
    Song, Xiaolin
    Kang, Qiaoju
    Tian, Zekun
    Yang, Yi
    Yang, Sihao
    Gao, Qiang
    Song, Yu
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5685 - 5689
  • [6] Feature extraction and classification of single trial motor imagery EEG
    Xu, Baoguo
    Song, Aiguo
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2007, 37 (04): : 629 - 633
  • [7] Wavelet Decomposition Based Automatic Sleep Stage Classification Using EEG
    Crasto, Nieves
    Upadhyay, Richa
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2017, PT I, 2017, 10208 : 508 - 516
  • [8] Comparison of classification methods on EEG signals based on wavelet packet decomposition
    Yong Zhang
    Yuting Zhang
    Jianying Wang
    Xiaowei Zheng
    Neural Computing and Applications, 2015, 26 : 1217 - 1225
  • [9] Comparison of classification methods on EEG signals based on wavelet packet decomposition
    Zhang, Yong
    Zhang, Yuting
    Wang, Jianying
    Zheng, Xiaowei
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (05): : 1217 - 1225
  • [10] Classification of EEG Signals Based on Autoregressive Model and Wavelet Packet Decomposition
    Zhang, Yong
    Liu, Bo
    Ji, Xiaomin
    Huang, Dan
    NEURAL PROCESSING LETTERS, 2017, 45 (02) : 365 - 378