FAST APPROACH TO THE TRACY-WIDOM LAW AT THE EDGE OF GOE AND GUE

被引:25
作者
Johnstone, Iain M. [1 ]
Ma, Zongming [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
关键词
Rate of convergence; random matrix; largest eigenvalue; LARGEST EIGENVALUE; SPACING DISTRIBUTIONS; RANDOM MATRICES; UNIVERSALITY; POLYNOMIALS; ENSEMBLES; LIMITS;
D O I
10.1214/11-AAP819
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the rate of convergence for the largest eigenvalue distributions in the Gaussian unitary and orthogonal ensembles to their Tracy-Widom limits. We show that one can achieve an O(N-2/3.) rate with particular choices of the centering and scaling constants. The arguments here also shed light on more complicated cases of Laguerre and Jacobi ensembles, in both unitary and orthogonal versions. Numerical work shows that the suggested constants yield reasonable approximations, even for surprisingly small values of N.
引用
收藏
页码:1962 / 1988
页数:27
相关论文
共 25 条
[11]   MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE [J].
Johnstone, Iain M. .
ANNALS OF STATISTICS, 2008, 36 (06) :2638-2716
[12]   Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white Wishart matrices [J].
Ma, Zongming .
BERNOULLI, 2012, 18 (01) :322-359
[13]  
Olver F. W. J., 1974, Introduction to Asymptotics and Special Functions, DOI 10.1201/9781439864548
[14]   Universality results for the largest eigenvalues of some sample covariance matrix ensembles [J].
Peche, Sandrine .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (3-4) :481-516
[15]   INEQUALITY AMONG DETERMINANTS [J].
SEILER, E ;
SIMON, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (09) :3277-3278
[16]   Correlation Functions for β=1 Ensembles of Matrices of Odd Size [J].
Sinclair, Christopher D. .
JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (01) :17-33
[17]   A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices [J].
Soshnikov, A .
JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) :1033-1056
[18]   Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge [J].
Tao, Terence ;
Vu, Van .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (02) :549-572
[19]  
Tracy CA, 2005, ANN I FOURIER, V55, P2197
[20]   Correlation functions, cluster functions, and spacing distributions for random matrices [J].
Tracy, CA ;
Widom, H .
JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (5-6) :809-835