FAST APPROACH TO THE TRACY-WIDOM LAW AT THE EDGE OF GOE AND GUE

被引:25
作者
Johnstone, Iain M. [1 ]
Ma, Zongming [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
关键词
Rate of convergence; random matrix; largest eigenvalue; LARGEST EIGENVALUE; SPACING DISTRIBUTIONS; RANDOM MATRICES; UNIVERSALITY; POLYNOMIALS; ENSEMBLES; LIMITS;
D O I
10.1214/11-AAP819
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the rate of convergence for the largest eigenvalue distributions in the Gaussian unitary and orthogonal ensembles to their Tracy-Widom limits. We show that one can achieve an O(N-2/3.) rate with particular choices of the centering and scaling constants. The arguments here also shed light on more complicated cases of Laguerre and Jacobi ensembles, in both unitary and orthogonal versions. Numerical work shows that the suggested constants yield reasonable approximations, even for surprisingly small values of N.
引用
收藏
页码:1962 / 1988
页数:27
相关论文
共 25 条
[1]   Classical skew orthogonal polynomials and random matrices [J].
Adler, M ;
Forrester, PJ ;
Nagao, T ;
van Moerbeke, P .
JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (1-2) :141-170
[2]  
[Anonymous], 1967, Orthogonal Polynomials
[3]  
Bornemann F., 2010, MARKOV PROCESS RELAT, V16, P803
[4]  
Choup LN, 2006, INT MATH RES NOTICES, V2006
[5]   Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited [J].
Choup, Leonard N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
[6]   Edgeworth expansion of the largest eigenvalue distribution function of Gaussian orthogonal ensemble [J].
Choup, Leonard N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
[7]   A rate of convergence result for the largest eigenvalue of complex white Wishart matrices [J].
El Karoui, Noureddine .
ANNALS OF PROBABILITY, 2006, 34 (06) :2077-2117
[8]   A Method to Calculate Correlation Functions for β=1 Random Matrices of Odd Size [J].
Forrester, Peter J. ;
Mays, Anthony .
JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (03) :443-462
[9]  
Guionnet A., 2010, CAMBRIDGE STUDIES AD, V118
[10]   APPROXIMATE NULL DISTRIBUTION OF THE LARGEST ROOT IN MULTIVARIATE ANALYSIS [J].
Johnstone, Iain M. .
ANNALS OF APPLIED STATISTICS, 2009, 3 (04) :1616-1633