WAVELET CHARACTERIZATION AND MODULAR INEQUALITIES FOR WEIGHTED LEBESGUE SPACES WITH VARIABLE EXPONENT

被引:30
作者
Izuki, Mitsuo [1 ]
Nakai, Eiichi [2 ]
Sawano, Yoshihiro [3 ]
机构
[1] Okayama Univ, Grad Sch Educ, Okayama 7008530, Japan
[2] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
Muckenhoupt weight; variable exponent; wavelet; weakly positive kernel; modular inequality; MAXIMAL OPERATOR; SUFFICIENT CONDITIONS; NORM INEQUALITIES; BOUNDEDNESS; BASES;
D O I
10.5186/aasfm.2015.4032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize weighted Lebesgue spaces with variable exponent in terms of wavelet. Also, we disprove some weighted modular inequalities when the exponent is not a constant one without using the A(infinity)-condition on weights. As a byproduct, we shall obtain the vector-valued maximal inequalities in the weighted setting.
引用
收藏
页码:551 / 571
页数:21
相关论文
共 40 条
  • [1] Multiresolution approximations and wavelet bases of weighted LP spaces
    Aimar, HA
    Bernardis, AL
    Martín-Reyes, F
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (05) : 497 - 510
  • [2] [Anonymous], VARIABLE LEBESGUE SP
  • [3] Bennett C., 1988, INTERPOLATION OPERAT
  • [4] Burenkov VI, 2010, EURASIAN MATH J, V1, P32
  • [5] BURENKOV VI, 2008, DOKL AKAD NAUK+, V422, P11
  • [6] Capone C, 2007, REV MAT IBEROAM, V23, P743
  • [7] Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
  • [8] Cruz-Uribe D, 2004, ANN ACAD SCI FENN-M, V29, P247
  • [9] Weighted norm inequalities for the maximal operator on variable Lebesgue spaces
    Cruz-Uribe, D.
    Fiorenza, A.
    Neugebauer, C. J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 744 - 760
  • [10] Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223