Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface

被引:38
作者
Colombara, Diego [1 ,2 ,3 ]
Elanzeery, Hossam [1 ,4 ]
Nicoara, Nicoleta [2 ]
Sharma, Deepanjan [2 ]
Claro, Marcel [2 ]
Schwarz, Torsten [5 ]
Koprek, Anna [5 ]
Wolter, Max Hilaire [1 ]
Melchiorre, Michele [1 ]
Sood, Mohit [1 ]
Valle, Nathalie [6 ]
Bondarchuk, Oleksandr [2 ]
Babbe, Finn [1 ,7 ]
Spindler, Conrad [1 ]
Cojocaru-Miredin, Oana [5 ,8 ]
Raabe, Dierk [5 ]
Dale, Phillip J. [1 ]
Sadewasser, Sascha [2 ]
Siebentritt, Susanne [1 ]
机构
[1] Univ Luxembourg, Phys & Mat Sci Res Unit, L-4422 Belvaux, Luxembourg
[2] Int Iberian Nanotechnol Lab, Av Mestre Jose Veiga, P-4715330 Braga, Portugal
[3] Univ Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy
[4] Avancis, Otto Hahn Ring 6, D-81739 Munich, Germany
[5] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
[6] Luxembourg Inst Sci & Technol, L-4422 Belvaux, Luxembourg
[7] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[8] Rhein Westfal TH Aachen, Inst Phys, Sommerfeldstr 14, D-52062 Aachen, Germany
关键词
SOLAR-CELLS; CU(IN; GA)SE-2; CUINSE2; FILMS; OXIDATION; LAYERS; ELECTRODEPOSITION; BANDGAP; GROWTH; OXYGEN;
D O I
10.1038/s41467-020-17434-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe2 solar cells. Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe2 photovoltaic material but suitable post deposition treatments can mitigate their effect.
引用
收藏
页数:14
相关论文
共 73 条
[1]   Cu-rich CuInSe2 solar cells with a Cu-poor surface [J].
Aida, Yasuhiro ;
Depredurand, Valerie ;
Larsen, Jes K. ;
Arai, Hitoshi ;
Tanaka, Daisuke ;
Kurihara, Masato ;
Siebentritt, Susanne .
PROGRESS IN PHOTOVOLTAICS, 2015, 23 (06) :754-764
[2]  
[Anonymous], 1991, Thermochemical Properties of Inorganic Substances
[3]   Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In, Ga)Se2 solar cells [J].
Avancini, Enrico ;
Carron, Romain ;
Bissig, Benjamin ;
Reinhard, Patrick ;
Menozzi, Roberto ;
Sozzi, Giovanna ;
Di Napoli, Simone ;
Feurer, Thomas ;
Nishiwaki, Shiro ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (03) :233-241
[4]   The hunt for the third acceptor in CuInSe2 and Cu(In,Ga)Se2 absorber layers [J].
Babbe, Finn ;
Elanzeery, Hossam ;
Wolter, Max H. ;
Santhosh, Korra ;
Siebentritt, Susanne .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (42)
[5]   Potassium fluoride postdeposition treatment with etching step on both Cu-rich and Cu-poor CuInSe2 thin film solar cells [J].
Babbe, Finn ;
Elanzeery, Hossam ;
Melchiorre, Michele ;
Zelenina, Anastasiya ;
Siebentritt, Susanne .
PHYSICAL REVIEW MATERIALS, 2018, 2 (10)
[6]   Engineering p-n junctions and bandgap tuning of InSe nanolayers by controlled oxidation [J].
Balakrishnan, Nilanthy ;
Kudrynskyi, Zakhar R. ;
Smith, Emily F. ;
Fay, Michael W. ;
Makarovsky, Oleg ;
Kovalyuk, Zakhar D. ;
Eaves, Laurence ;
Beton, Peter H. ;
Patane, Amalia .
2D MATERIALS, 2017, 4 (02)
[7]  
Bertram T, 2014, 2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), P3633, DOI 10.1109/PVSC.2014.6924894
[8]   Thermal oxidation of CuInSe2: Experiment and physico-chemical model [J].
Boiko, ME ;
Medvedkin, GA .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1996, 41-2 :307-314
[9]   FREE-ENERGIES AND ENTHALPIES OF POSSIBLE GAS-PHASE AND SURFACE-REACTIONS FOR PREPARATION OF CUINSE2 [J].
CAHEN, D ;
NOUFI, R .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1992, 53 (08) :991-1005
[10]   Mechanistic Study of One-Step Cathodic Electrodeposition of Mixed Cu-In-Ga Oxide/Hydroxide Films with Hydrogen Peroxide Oxygen Precursor [J].
Chassaing, E. ;
Duchatelet, A. ;
Lincot, D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (13) :D852-D860