A multigrid finite element solver for the Cahn-Hilliard equation

被引:83
作者
Kay, D [1 ]
Welford, R [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
关键词
Cahn-Hilliard equation; finite element; non-linear multigrid method;
D O I
10.1016/j.jcp.2005.07.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A multigrid finite element solver for the Cahn-Hilliard equation is presented that has mesh-independent convergence rates for any time-step size, including in the important limit epsilon -> 0 which is examined via numerical examples. Numerics are performed for a number of test problems which show that the features of the Cahn-Hilliard equation (minimising interface measure, Lyapunov energy functional etc.) are preserved. We also explore the use of this solver in conjunction with adaptive time-stepping and adaptive mesh strategies. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:288 / 304
页数:17
相关论文
共 24 条
[1]   CONVERGENCE OF THE CAHN-HILLIARD EQUATION TO THE HELE-SHAW MODEL [J].
ALIKAKOS, ND ;
BATES, PW ;
CHEN, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (02) :165-205
[2]   Finite element approximation of a phase field model for void electromigration [J].
Barrett, JW ;
Nürnberg, R ;
Styles, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :738-772
[3]   An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-Lipschitzian adsorption kinetics [J].
Barrett, JW ;
Knabner, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :1862-1882
[4]  
Blowey J. F., 1992, Euro. J. Appl. Math., V3, P147, DOI DOI 10.1017/S0956792500000759
[5]   A theoretical and numerical model for the study of incompressible mixture flows [J].
Boyer, F .
COMPUTERS & FLUIDS, 2002, 31 (01) :41-68
[6]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[7]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[8]  
Chen XF, 1996, J DIFFER GEOM, V44, P262
[9]  
Elliott C. M., 1989, Math. Models Phase Change Probl, P35, DOI DOI 10.1007/978-3-0348-9148-6_3
[10]   NUMERICAL-STUDIES OF THE CAHN-HILLIARD EQUATION FOR PHASE-SEPARATION [J].
ELLIOTT, CM ;
FRENCH, DA .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 38 (02) :97-128