Operator Spin Foams: holonomy formulation and coarse graining

被引:15
作者
Bahr, Benjamin [1 ]
机构
[1] Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
来源
LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY | 2012年 / 360卷
关键词
D O I
10.1088/1742-6596/360/1/012042
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A dual holonomy version of operator spin foam models is presented, which is particularly adapted to the notion of coarse graining. We discuss how this leads to a natural way of comparing models on different discretization scales, and a notion of renormalization group flow on the partially ordered set of 2-complexes.
引用
收藏
页数:5
相关论文
共 12 条
[1]  
BAHR B, ARXIV11036264GRQC, P21
[2]   Perfect discretization of reparametrization invariant path integrals [J].
Bahr, Benjamin ;
Dittrich, Bianca ;
Steinhaus, Sebastian .
PHYSICAL REVIEW D, 2011, 83 (10)
[3]   Operator spin foam models [J].
Bahr, Benjamin ;
Hellmann, Frank ;
Kaminski, Wojciech ;
Kisielowski, Marcin ;
Lewandowski, Jerzy .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (10)
[4]   (Broken) Gauge symmetries and constraints in Regge calculus [J].
Bahr, Benjamin ;
Dittrich, Bianca .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (22)
[5]  
Dittrich B., ARXIV11110967GRQC
[6]  
Dittrich B., ARXIV11094927GRQC
[7]   Spin-foams for all loop quantum gravity [J].
Kaminski, Wojciech ;
Kisielowski, Marcin ;
Lewandowski, Jerzy .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (09)
[8]  
Magliaro E., ARXIV10105227GRQC
[9]   Loop quantization as a continuum limit [J].
Manrique, Elisa ;
Oeckl, Robert ;
Weber, Axel ;
Zapata, Jose A. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (10) :3393-3403
[10]   Dual variables and a connection picture for the Euclidean Barrett-Crane model [J].
Pfeiffer, H .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (06) :1109-1137