Equivalent Conditions for Local Error Bounds

被引:12
作者
Meng, K. W. [1 ]
Yang, X. Q. [2 ]
机构
[1] SW Jiaotong Univ, Sch Econ & Management, Chengdu 610031, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Error bounds; Normal cones; Subderivative; Subdifferential; Strong slope; LOWER SEMICONTINUOUS FUNCTIONS; WEAK SHARP MINIMA; REGULARITY; NONSMOOTH; CALMNESS;
D O I
10.1007/s11228-012-0217-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present two classes of equivalent conditions for local error bounds in finite dimensional spaces. We formulate conditions of the first class by using subderivatives, subdifferentials and strong slopes for nearby points outside the referenced set, and show that these conditions actually characterize a uniform version of the local error bound property. We demonstrate this uniformity for the max function of a finite collection of smooth functions, and as a consequence we show that quasinormality constraint qualifications guarantee the existence of local error bounds. We further present the second class of equivalent conditions for local error bounds by using the various limits defined on the boundary of the referenced set. In presenting these conditions, we exploit the variational geometry of the referenced set in a systematic way and unify some existing results in the literature.
引用
收藏
页码:617 / 636
页数:20
相关论文
共 34 条
[1]  
Abadie J.M., 1967, Nonlinear Programming, P19
[2]  
[Anonymous], 1998, Variational Analysis
[3]  
Azé D, 2006, J CONVEX ANAL, V13, P225
[4]   Characterizations of error bounds for lower semicontinuous functions on metric spaces [J].
Azé, D ;
Corvellec, JN .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (03) :409-425
[5]   Variational pairs and applications to stability in nonsmooth analysis [J].
Azé, D ;
Corvellec, JN ;
Lucchetti, RE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (05) :643-670
[6]  
Aze D., 2003, ESAIM P, V13, P1
[7]   WEAK SHARP MINIMA IN MATHEMATICAL-PROGRAMMING [J].
BURKE, JV ;
FERRIS, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1340-1359
[8]  
Clarke F. H., 1998, NONSMOOTH ANAL CONTR, V178, DOI 10.1007/b97650
[9]  
De Giorgi E., 1980, Atti della Accademia Nazionale dei Lincei. Rendiconti, Classe di Scienze Fisiche, Matematiche e Naturali, V68, P180
[10]   Regularity and conditioning of solution mappings in variational analysis [J].
Dontchev, AL ;
Rockafellar, RT .
SET-VALUED ANALYSIS, 2004, 12 (1-2) :79-109