A variant of the tandem duplication - random loss model of genome rearrangement

被引:15
作者
Bouvel, Mathilde [1 ]
Rossin, Dominique [1 ]
机构
[1] Univ Paris Diderot, LIAFA, CNRS, F-75205 Paris 13, France
关键词
Sorting; Permutations; Pattern; Genome rearrangement; Tandem duplication - random loss model; Pattern-avoiding permutations; TRANSPOSITION DISTANCE;
D O I
10.1016/j.tcs.2008.11.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In [K. Chaudhuri, K. Chen, R. Mihaescu, S. Rao, On the tandem duplication-random loss model of genome rearrangement, in: SODA, 2006, pp. 564-570]. Chaudhuri, Chen, Mihaescu and Rao study algorithmic properties of the tandem duplication - random loss model of genome rearrangement, well-known in evolutionary biology. In their model, the cost of one step of duplication-loss of width k is alpha(k) for alpha = 1 or alpha >= 2. In this paper, we study a variant of this model, where the cost of one step of width k is 1 if k <= K and infinity if k > K, for any value of the parameter K is an element of N boolean OR {infinity}. We first show that permutations obtained after p steps of width K define classes of pattern-avoiding permutations. We also compute the numbers Of duplication-loss steps of width K necessary and sufficient to obtain any permutation of S(n) in the worst case and on average. In this second part, we may also consider the case K = K(n), a function of the size n of the permutation oil which the duplication-loss operations are performed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:847 / 858
页数:12
相关论文
共 10 条
[1]  
Albert MH, 2007, AUSTRALAS J COMB, V37, P43
[2]  
BERARD S, 2007, IEEE ACM T COMPUT BI, V4
[3]  
Bona M., 2004, Combinatorics of Permutations
[4]  
BOUVEL M, 2008, ARXIV08061494V1
[5]  
CHAUDHURI K, 2006, SODA, P564
[6]  
CHEN M, 2004, P IEEE ICASSP MAY, P533
[7]  
Comtet L., 1974, ADV COMBINATORICS
[8]   The reconstruction of doubled genomes [J].
El-Marbrouk, N ;
Sankoff, D .
SIAM JOURNAL ON COMPUTING, 2003, 32 (03) :754-792
[9]  
Labarre A, 2005, LECT NOTES COMPUT SC, V3692, P216
[10]   New bounds and tractable instances for the transposition distance [J].
Labarre, Anthony .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2006, 3 (04) :380-394