Modeling Ice Shelf/Ocean in Antarctica A REVIEW

被引:110
作者
Dinniman, Michael S. [1 ]
Asay-Davis, Xylar S. [2 ]
Galton-Fenzi, Benjamin K. [3 ,4 ]
Holland, Paul R. [5 ]
Jenkins, Adrian [5 ]
Timmermann, Ralph [6 ]
机构
[1] Old Dominion Univ, Ctr Coastal Phys Oceanog, Norfolk, VA 23529 USA
[2] Potsdam Inst Climate Impact Res, Earth Syst Anal, Potsdam, Germany
[3] Australian Antarctic Div, Hobart, Tas, Australia
[4] Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia
[5] British Antarctic Survey, Cambridge, England
[6] Alfred Wegener Inst Polar & Marine Res, Bremerhaven, Germany
基金
美国国家科学基金会; 英国自然环境研究理事会;
关键词
OCEAN CIRCULATION BENEATH; CIRCUMPOLAR DEEP-WATER; SHELF MELT RATES; CONTINENTAL-SHELF; WEST ANTARCTICA; SEA; SHEET; GLACIER; DRIVEN; IMPACT;
D O I
10.5670/oceanog.2016.106
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The most rapid loss of ice from the Antarctic Ice Sheet is observed where ice streams flow into the ocean and begin to float, forming the great Antarctic ice shelves that surround much of the continent. Because these ice shelves are floating, their thinning does not greatly influence sea level. However, they also buttress the ice streams draining the ice sheet, and so ice shelf changes do significantly influence sea level by altering the discharge of grounded ice. Currently, the most significant loss of mass from the ice shelves is from melting at the base (although iceberg calving is a close second). Accessing the ocean beneath ice shelves is extremely difficult, so numerical models are invaluable for understanding the processes governing basal melting. This paper describes the different ways in which ice shelf/ocean interactions are modeled and discusses emerging directions that will enhance understanding of how the ice shelves are melting now and how this might change in the future.
引用
收藏
页码:144 / 153
页数:10
相关论文
共 72 条
[1]   Parameterization for subgrid-scale motion of ice-shelf calving fronts [J].
Albrecht, T. ;
Martin, M. ;
Haseloff, M. ;
Winkelmann, R. ;
Levermann, A. .
CRYOSPHERE, 2011, 5 (01) :35-44
[2]   Environmental controls of marine productivity hot spots around Antarctica [J].
Arrigo, Kevin R. ;
van Dijken, Gert L. ;
Strong, Aaron L. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (08) :5545-5565
[3]   Eddy-Driven Exchange between the Open Ocean and a Sub-Ice Shelf Cavity [J].
Arthun, Marius ;
Holland, Paul R. ;
Nicholls, Keith W. ;
Feltham, Daniel L. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2013, 43 (11) :2372-2387
[4]   Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica [J].
Arzeno, Isabella B. ;
Beardsley, Robert C. ;
Limeburner, Richard ;
Owens, Breck ;
Padman, Laurie ;
Springer, Scott R. ;
Stewart, Craig L. ;
Williams, Michael J. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (07) :4214-4233
[5]   Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1) [J].
Asay-Davis, Xylar S. ;
Cornford, Stephen L. ;
Durand, Gael ;
Galton-Fenzi, Benjamin K. ;
Gladstone, Rupert M. ;
Gudmundsson, G. Hilmar ;
Hattermann, Tore ;
Holland, David M. ;
Holland, Denise ;
Holland, Paul R. ;
Martin, Daniel F. ;
Mathiot, Pierre ;
Pattyn, Frank ;
Seroussi, Helene .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (07) :2471-2497
[6]   A numerical model of the Weddell Sea: Large-scale circulation and water mass distribution [J].
Beckmann, A ;
Hellmer, HH ;
Timmermann, R .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1999, 104 (C10) :23375-23391
[7]  
Christmann J., 2016, ANN GLACIOLOGY
[8]   Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica [J].
Craven, Mike ;
Allison, Ian ;
Fricker, Helen Amanda ;
Warner, Roland .
JOURNAL OF GLACIOLOGY, 2009, 55 (192) :717-728
[9]   Simulation of subice shelf melt rates in a general circulation model: Velocity-dependent transfer and the role of friction [J].
Dansereau, Veronique ;
Heimbach, Patrick ;
Losch, Martin .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (03) :1765-1790
[10]   Glacier surge after ice shelf collapse [J].
De Angelis, H ;
Skvarca, P .
SCIENCE, 2003, 299 (5612) :1560-1562