Tools for quantum network design

被引:50
作者
Azuma, Koji [1 ,2 ]
Bauml, Stefan [3 ]
Coopmans, Tim [4 ]
Elkouss, David [4 ]
Li, Boxi [4 ,5 ,6 ]
机构
[1] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[2] NTT Corp, NTT Res Ctr Theoret Quantum Phys, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Ave Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[5] ETH, Ramistr 101, CH-8092 Zurich, Switzerland
[6] Forschungszentrum Julich, Peter Grunberg Inst Quantum Control PGI 8, D-52425 Julich, Germany
来源
AVS QUANTUM SCIENCE | 2021年 / 3卷 / 01期
关键词
SQUASHED ENTANGLEMENT; KEY DISTRIBUTION; STEINER TREES; COMMUNICATION; REPEATERS; CRYPTOGRAPHY; COMPUTATION; PACKING; FLOW; TELEPORTATION;
D O I
10.1116/5.0024062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum networks will enable the implementation of communication tasks with qualitative advantages with respect to the communication networks known today. While it is expected that the first demonstrations of small scale quantum networks will take place in the near term, many challenges remain to scale them. To compare different solutions, optimize over parameter space, and inform experiments, it is necessary to evaluate the performance of concrete quantum network scenarios. Here, the authors review the state-of-the-art of tools for evaluating the performance of quantum networks. The authors present them from three different angles: information-theoretic benchmarks, analytical tools, and simulation.
引用
收藏
页数:27
相关论文
共 217 条
[11]   Multipartite secret key distillation and bound entanglement [J].
Augusiak, Remigiusz ;
Horodecki, Pawel .
PHYSICAL REVIEW A, 2009, 80 (04)
[12]   An O(log k) approximate min-cut max-flow theorem and approximation algorithm [J].
Aumann, Y ;
Rabani, Y .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :291-301
[13]   Distributed compression and multiparty squashed entanglement [J].
Avis, David ;
Hayden, Patrick ;
Savov, Ivan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (11)
[14]   Aggregating quantum repeaters for the quantum internet [J].
Azuma, Koji ;
Kato, Go .
PHYSICAL REVIEW A, 2017, 96 (03)
[15]   Fundamental rate-loss trade-off for the quantum internet [J].
Azuma, Koji ;
Mizutani, Akihiro ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2016, 7
[16]   All-photonic quantum repeaters [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2015, 6
[17]   Quantum repeaters and computation by a single module: Remote nondestructive parity measurement [J].
Azuma, Koji ;
Takeda, Hitoshi ;
Koashi, Masato ;
Imoto, Nobuyuki .
PHYSICAL REVIEW A, 2012, 85 (06)
[18]   Quantum partially observable Markov decision processes [J].
Barry, Jennifer ;
Barry, Daniel T. ;
Aaronson, Scott .
PHYSICAL REVIEW A, 2014, 90 (03)
[19]  
Bartlett B, 2018, Arxiv, DOI arXiv:1808.07047
[20]   Universal programmable photonic architecture for quantum information processing [J].
Bartlett, Ben ;
Fan, Shanhui .
PHYSICAL REVIEW A, 2020, 101 (04)