Tin dioxide (SnO2) attracts considerable attention as an anode material due to its high theoretical capacity compared with graphite. However, the practical use of a SnO2 anode is significantly hampered by its large volume changes during lithium insertion and extraction processes, which leads to poor cyclic performance. To overcome this problem, a simple and efficient method was employed to fabricate SnO2-based nanocomposites with controlled titanium nitride (TiN) modification. The as-prepared samples were characterized by XRD, Raman, XPS, TEM and electrochemical measurements. Compared with the pristine SnO2, the appropriate TiN modified SnO2 nanocomposite electrodes exhibited improved lithium storage performance. Particularly, the hybrid anode with 2 wt% TiN delivered a high first capacity of 1580.6 mA h g(-1) and a stable capacity of 404 mA h g(-1) after 50 cycles at a charge-discharge rate of 0.1 C. The improved lithium storage performance was attributed to the inactive TiN matrix, which significantly enhanced the structural stability and electronic conductivity of the SnO2-TiN nanocomposites.