IDENTIFY ANOMALY COMPONENT BY SPARSITY AND LOW RANK

被引:0
作者
Wang, Wei [1 ]
Li, Shuangjiang [1 ]
Qi, Hairong [1 ]
Ayhan, Bulent [2 ]
Kwan, Chiman [2 ]
Vance, Steven [3 ]
机构
[1] Univ Tennessee, Dept EECS, Knoxville, TN 37996 USA
[2] Signal Proc Inc, Rockville, MD USA
[3] Jet Prop Lab, Pasadena, CA USA
来源
2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2015年
关键词
Hyperspectral image; anomaly detection; sparsity; low rank; HYPERSPECTRAL IMAGERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional hyperspectral anomaly detection methods either model the global background or the local neighborhood, that bring some apparent drawbacks, such as the unreasonable assumption of uni-modular background in global detectors, or the high false alarms by sliding windows in local detectors. In this paper, a source component-based anomaly detection approach is proposed. It first extracts the source components in the spectral image data cube by using the blind source component separation and then identifies the components that are anomaly (or salient) to other components. We interpret the anomaly detection as a matrix decomposition problem with the minimum volume constraint for the multi-modular background and sparsity constraint for the anomaly image pixels. Experimental results show that the approach is promising for anomaly detection in spectral data cube.
引用
收藏
页数:4
相关论文
共 10 条
[1]  
Byers S., 1998, J AM STAT ASS
[2]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[3]   Anomaly detection and classification for hyperspectral imagery [J].
Chang, CI ;
Chiang, SS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (06) :1314-1325
[4]   Anomaly detection in hyperspectral imagery based on maximum entropy and nonparametric estimation [J].
He, Lin ;
Pan, Quan ;
Di, Wei ;
Li, Yuanqing .
PATTERN RECOGNITION LETTERS, 2008, 29 (09) :1392-1403
[5]  
Li W., 2015, IEEE T GEOSCI REMOTE
[6]  
Liu W., 2008, IEEE P IGASS
[7]  
Miao L., 2007, IEEE P ICIP
[8]   Vertex component analysis: A fast algorithm to unmix hyperspectral data [J].
Nascimento, JMP ;
Dias, JMB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :898-910
[9]  
Nasrabadi N. M., 2008, P SPIE
[10]  
REED IS, 1990, IEEE T ACOUST SPEECH, V38