Normal families of holomorphic functions and multiple values

被引:2
作者
Zhao, Lijuan [1 ]
Wu, Xiangzhong [1 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing 210046, Jiangsu, Peoples R China
关键词
holomorphic functions; normal family; multiplicity; MEROMORPHIC FUNCTIONS;
D O I
10.36045/bbms/1347642381
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a family of holomorphic functions defined in D subset of C, and let k, m, n, p be four positive integers with k+p+1/m + p+1/n < 1. Let psi(not equivalent to 0, infinity) be a meromorphic function in D and which has zeros only of multiplicities at most p. Suppose that, for every function f is an element of F, (i) f has zeros only of multiplicities at least m; (ii) all zeros of f((k)) - psi(z) have multiplicities at least n; (iii) all poles of psi have multiplicities at most k, and (iv) psi(z) and f(z) have no common zeros, then F is normal in D.
引用
收藏
页码:535 / 547
页数:13
相关论文
共 18 条
[1]   Normality and exceptional values of derivatives [J].
Bergweiler, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (01) :121-129
[2]   Normal families and multiple values [J].
Fang, M. L. ;
Chang, J. M. .
ARCHIV DER MATHEMATIK, 2007, 88 (06) :560-568
[3]  
Fang M. L., 1994, ACTA MATH SINICA, V37, P86
[4]   On a result of Singh and Singh concerning shared values and normality [J].
Grahl, Juergen ;
Nevo, Shahar .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (04) :347-356
[5]  
Gu Y. X., 1979, Sci. Sin., V1, P267
[6]  
Hayman W. K., 1967, Research Problems in Function Theory
[7]  
Hayman W. K., 1964, Meromorphic functions
[8]   Normality and shared values concerning differential polynomials [J].
Lei ChunLin ;
Fang MingLiang .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (03) :749-754
[9]  
Miranda C., 1935, Bull. Sci. Math. Fr, V63, P185
[10]   Normal families and shared values [J].
Pang, XC ;
Zalcman, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :325-331