The Fibonacci Model and the Temperley-Lieb Algebra

被引:0
作者
Kauffman, Louis H. [1 ]
Lomonaco, Samuel J., Jr. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci MC 249, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Maryland, Baltimore, MD 21201 USA
来源
QUANTUM INFORMATION AND COMPUTATION VII | 2009年 / 7342卷
关键词
knots; links; braids; quantum computing; unitary transformation; Jones polynomial; Temperley-Lieb algebra;
D O I
10.1117/12.817313
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give an elementary construction of the Fibonacci model, a unitary braid group representation that is universal for quantum computation.
引用
收藏
页数:13
相关论文
共 21 条
[1]  
AHARONOV D, QUANTPH0511096
[2]  
FREEDMAN M, 2001, QUANTPH0110060V1
[3]  
Freedman M., 1998, TOPOLOGICAL VIEWS CO, P453
[4]  
FREEDMAN M, 2000, QUANTPH0001108V2
[5]   Simulation of topological field theories by quantum computers [J].
Freedman, MH ;
Kiataev, A ;
Wang, ZH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) :587-603
[6]  
FREEDMAN MH, QUANTPH0003128
[7]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[8]  
Kauffman L., 2002, QUANTUM COMPUTATION, V305, P101
[9]  
Kauffman L.H., 2007, P SOC PHOTO-OPT INS
[10]  
Kauffman L. H., 2006, P SOC PHOTO-OPT INS, V6244