Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit

被引:31
作者
Constantin, Peter [1 ]
Vicol, Vlad [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Euler equations; Navier-Stokes equations; Inviscid limit; Energy dissipation; VANISHING VISCOSITY LIMIT; EULER EQUATIONS; BOUNDARY; FLOWS; VORTICITY; PLANE;
D O I
10.1007/s00332-017-9424-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any weak space-time vanishing viscosity limit of a sequence of strong solutions of Navier-Stokes equations in a bounded domain of satisfies the Euler equation if the solutions' local enstrophies are uniformly bounded. We also prove that weak inviscid limits of solutions of 3D Navier-Stokes equations in bounded domains are weak solutions of the Euler equation if they locally satisfy a scaling property of their second-order structure function. The conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a priori excluded in the limit.
引用
收藏
页码:711 / 724
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 1995, TURBULENCE LEGACY AN, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[2]  
Bardos C, 2007, RUSS MATH SURV+, V62, P409, DOI [10.1070/RM2007v062n03ABEH004410, 10.4213/rm6811]
[3]   Non-uniqueness for the Euler equations: the effect of the boundary [J].
Bardos, C. ;
Szekelyhidi, L., Jr. ;
Wiedemann, E. .
RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (02) :189-207
[4]   The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow [J].
Bardos, Claude ;
Titi, Edriss S. ;
Wiedemann, Emil .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (15-16) :757-760
[5]   Mathematics and turbulence: where do we stand? [J].
Bardos, Claude W. ;
Titi, Edriss S. .
JOURNAL OF TURBULENCE, 2013, 14 (03) :42-76
[6]   ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION [J].
CONSTANTIN, P ;
TITI, ES ;
WEINAN, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :207-209
[7]  
Constantin P., 2017, SIAM J MATH ANAL
[8]   ON THE INVISCID LIMIT OF THE NAVIER-STOKES EQUATIONS [J].
Constantin, Peter ;
Kukavica, Igor ;
Vicol, Vlad .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) :3075-3090
[9]  
Gie G. - M., 2015, VANISHING VISCOSITY
[10]  
Kato T., 1984, SEMINAR PARTIAL DIFF, P85