Study on the Optimal Parameters of Artificial Neural Networks by Applying Uniform Design

被引:0
|
作者
Lin, Ta-Hsiang [1 ]
Chou, Jyh-Horng [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung, Taiwan
来源
2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE) | 2016年
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When an artificial neural network (ANN) is used for modeling applications, the architecture and parameters of the network, like number of units and number of layers in each layer, need to be determined. In this paper, the uniform design is used to reduce the number of experiments to find the important factors, and the regression analysis methodology is then applied to find more accurate combination of design parameters for optimizing the ANN modeling.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Evaluation of effect of blast design parameters on flyrock using artificial neural networks
    Monjezi, M.
    Mehrdanesh, A.
    Malek, A.
    Khandelwal, Manoj
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (02): : 349 - 356
  • [22] Optimisation of the design parameters of a domestic refrigerator using CFD and artificial neural networks
    Avci, Hasan
    Kumlutas, Dilek
    Ozer, Ozgun
    Ozsen, Mete
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2016, 67 : 227 - 238
  • [23] Investigation of design parameters of a domestic refrigerator by artificial neural networks and numerical simulations
    Kumlutas, Dilek
    Karadeniz, Ziya Haktan
    Avci, Hasan
    Ozsen, Mete
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (06): : 1678 - 1689
  • [24] Evaluation of effect of blast design parameters on flyrock using artificial neural networks
    M. Monjezi
    A. Mehrdanesh
    A. Malek
    Manoj Khandelwal
    Neural Computing and Applications, 2013, 23 : 349 - 356
  • [25] Optimal Spherical Separability: Artificial Neural Networks
    Garimella, Rama Murthy
    Yaparla, Ganesh
    Singh, Rhishi Pratap
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 327 - 338
  • [26] Applying artificial neural networks and virtual experimental design to quality improvement of two industrial processes
    Shi, X
    Schillings, P
    Boyd, D
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2004, 42 (01) : 101 - 118
  • [27] Applying back propagation artificial neural networks to predict coal quality parameters and coalbed gas content
    Heping, P.
    Guoqiang, L.
    International Mining and Minerals, 1998, 1 (02): : 45 - 49
  • [28] Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks
    Pabisek, Ewa
    Waszczyszyn, Zenon
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 64-65 : 403 - 412
  • [29] Studies on the possibility of applying artificial neural networks to estimate real time operation parameters of power systems
    Shen, C
    Sun, YZ
    Lu, Q
    CONTROL OF POWER SYSTEMS AND POWER PLANTS 1997 (CPSPP'97), 1998, : 305 - 309
  • [30] EVALUATING THE CONTRIBUTING ENVIRONMENTAL PARAMETERS ASSOCIATED WITH EUTROPHICATION IN A SHALLOW LAKE BY APPLYING ARTIFICIAL NEURAL NETWORKS TECHNIQUES
    Hadjisolomou, Ekaterini
    Stefanidis, Konstantinos
    Papatheodorou, George
    Papastergiadou, Evanthia
    FRESENIUS ENVIRONMENTAL BULLETIN, 2017, 26 (05): : 3200 - 3208