Superlinear problems without Ambrosetti and Rabinowitz growth condition

被引:212
作者
Miyagaki, O. H. [1 ]
Souto, M. A. S. [2 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, PB, Brazil
关键词
Variational methods; Critical points; Superlinear problems; Elliptic equations;
D O I
10.1016/j.jde.2008.02.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Superlinear elliptic boundary value problems without Ambrosetti and Rabinowitz growth condition are considered. Existence of nontrivial solution result is established by combining some arguments used by Struwe and Tarantello and Schechter and Zou (also by Wang and Wei). Firstly, by using the mountain pass theorem due to Ambrosetti and Rabinowitz is constructed a solution for almost every parameter; by varying the parameter L Then, it is considered the continuation of the solutions. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3628 / 3638
页数:11
相关论文
共 11 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1970, PROCSYMPPURMATH
[3]   VARIATIONAL ELLIPTIC PROBLEMS WHICH ARE NONQUADRATIC AT INFINITY [J].
COSTA, DG ;
MAGALHAES, CA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (11) :1401-1412
[4]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[5]   Superlinear problems [J].
Schechter, M ;
Zou, WM .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 214 (01) :145-160
[6]  
Struwe M, 1998, B UNIONE MAT ITAL, V1B, P109
[7]   Homoclinic orbits for asymptotically linear Hamiltonian systems [J].
Szulkin, A ;
Zou, WM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) :25-41
[8]  
Wang G, 2002, MATH NACHR, V233, P221, DOI 10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.3.CO
[9]  
2-D
[10]   On a Schrodinger equation with periodic potential and spectrum point zero [J].
Willem, M ;
Zou, WM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (01) :109-132