Porous Organic Frameworks: Synthetic Strategy and Their Applications

被引:27
作者
Ren Hao [1 ]
Zhu Guangshan [1 ]
机构
[1] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
porous organic frameworks; synthetic principle; functionalization; adsorption and separation; catalysis; guest-host chemistry; AROMATIC FRAMEWORKS; POLYMER NETWORKS; INTRINSIC MICROPOROSITY; TARGETED SYNTHESIS; SURFACE-AREA; ADSORPTION PROPERTIES; DESIGNED SYNTHESIS; CARBON CAPTURE; EFFICIENT CO2; GAS-STORAGE;
D O I
10.6023/A15010071
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Porous materials have been intensively applied in fields of ion exchange, adsorption and separation, host-guest chemistry, etc. The development of porous materials has fundamental and practical significance. Based on the component and constructing bond of porous materials, they include zeolite, mesoporous materials, metal-organic frameworks (MOFs) also known as coordination polymers, and porous organic frameworks (POFs). Compared with other porous materials, POFs could be considered as a new star. POFs are constructed by the designable and tunable organic building units (OBUs) via robust covalent bonds. Therefore, POFs display a series of advantages, such as diverse skeletons, high stability, high surface area, tunable pore, etc. The synthesis procedure could be described as the assembly of building units via specific acting force. In this review, we will introduce the synthetic principles, gas storage, catalysis, and other applications of the advanced POFs.
引用
收藏
页码:587 / 599
页数:13
相关论文
共 64 条
[1]   Gas storage in porous aromatic frameworks (PAFs) [J].
Ben, Teng ;
Pei, Cuiying ;
Zhang, Daliang ;
Xu, Jun ;
Deng, Feng ;
Jing, Xiaofei ;
Qiu, Shilun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :3991-3999
[2]   Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area [J].
Ben, Teng ;
Ren, Hao ;
Ma, Shengqian ;
Cao, Dapeng ;
Lan, Jianhui ;
Jing, Xiaofei ;
Wang, Wenchuan ;
Xu, Jun ;
Deng, Feng ;
Simmons, Jason M. ;
Qiu, Shilun ;
Zhu, Guangshan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (50) :9457-9460
[3]   Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials [J].
Budd, PM ;
Ghanem, BS ;
Makhseed, S ;
McKeown, NB ;
Msayib, KJ ;
Tattershall, CE .
CHEMICAL COMMUNICATIONS, 2004, (02) :230-231
[4]   An Efficient Polymer Molecular Sieve for Membrane Gas Separations [J].
Carta, Mariolino ;
Malpass-Evans, Richard ;
Croad, Matthew ;
Rogan, Yulia ;
Jansen, Johannes C. ;
Bernardo, Paola ;
Bazzarelli, Fabio ;
McKeown, Neil B. .
SCIENCE, 2013, 339 (6117) :303-307
[5]   Light-Harvesting Conjugated Microporous Polymers: Rapid and Highly Efficient Flow of Light Energy with a Porous Polyphenylene Framework as Antenna [J].
Chen, Long ;
Honsho, Yoshihito ;
Seki, Shu ;
Jiang, Donglin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (19) :6742-6748
[6]   Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation [J].
Chen, Qi ;
Luo, Min ;
Hammershoj, Peter ;
Zhou, Ding ;
Han, Ying ;
Laursen, Bo Wegge ;
Yan, Chao-Guo ;
Han, Bao-Hang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (14) :6084-6087
[7]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170
[8]   Nanoporous organic polymer networks [J].
Dawson, Robert ;
Cooper, Andrew I. ;
Adams, Dave J. .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (04) :530-563
[9]   Chemical tuning of CO2 sorption in robust nanoporous organic polymers [J].
Dawson, Robert ;
Adams, Dave J. ;
Cooper, Andrew I. .
CHEMICAL SCIENCE, 2011, 2 (06) :1173-1177
[10]   Covalent organic frameworks (COFs): from design to applications [J].
Ding, San-Yuan ;
Wang, Wei .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (02) :548-568