Burgers' equation and the sticky particles model

被引:5
|
作者
Moutsinga, Octave [1 ]
机构
[1] Univ Sci & Tech Masuku, Fac Sci, Dept Math & Informat, Franceville, Gabon
关键词
CONSERVATION; DYNAMICS;
D O I
10.1063/1.4729540
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Under general assumptions on the initial data, we show that the entropy solution (x, t) bar right arrow u(x, t) of the one-dimensional inviscid Burgers' equation is the velocity function of a sticky particles model whose initial mass distribution is Lebesgue measure. Precisely, the particles trajectories (x, t) bar right arrow X-0,X- t(x) are given by a forward flow: for all (x, s, t) is an element of R x R+ x R+, X-0,X-s+t(x) = X-s,X-t(X-0,X-s(x)) and partial derivative/partial derivative t X-s,X-t = u(X-s,X-t, s + t) = E[u(., s)vertical bar X-s,X-t]; u(x, t) = E[u(., 0)vertical bar X-0,X-t = x]. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729540]
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Closure in Reduced-Order Model of Burgers Equation
    Imtiaz, H.
    Akhtar, I.
    2015 12TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2015, : 407 - 414
  • [2] Asymptotics of the sticky particles evolution
    Hynd, Ryan
    Tudorascu, Adrian
    NONLINEARITY, 2024, 37 (07)
  • [3] Burgers' equation in the complex plane
    VandenHeuvel, Daniel J.
    Lustri, Christopher J.
    King, John R.
    Turner, Ian W.
    McCue, Scott W.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 448
  • [4] The Burgers-Hilbert Equation
    Hunter, John K.
    THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 41 - 57
  • [5] Closure modeling in reduced-order model of Burgers' equation for control applications
    Imtiaz, Haroon
    Akhtar, Imran
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2017, 231 (04) : 642 - 656
  • [6] Instanton filtering for the stochastic Burgers equation
    Grafke, Tobias
    Grauer, Rainer
    Schaefer, Tobias
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (06)
  • [7] STICKY PARTICLES ON THE LINE UNDER HARMONIC INTERACTIONS
    Raczynski, Andrzej
    REPORTS ON MATHEMATICAL PHYSICS, 2010, 65 (02) : 189 - 202
  • [8] Fractional Burgers wave equation on a finite domain
    Jelic, Sladan
    Zorica, Dusan
    CHAOS SOLITONS & FRACTALS, 2022, 154
  • [9] Spontaneous Stochasticity and Anomalous Dissipation for Burgers Equation
    Eyink, Gregory L.
    Drivas, Theodore D.
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (02) : 386 - 432
  • [10] The quadratically cubic Burgers equation: an exactly solvable nonlinear model for shocks, pulses and periodic waves
    Rudenko, Oleg V.
    Hedberg, Claes M.
    NONLINEAR DYNAMICS, 2016, 85 (02) : 767 - 776