First-generation species-selective chemical probes for fluorescence imaging of human senescence-associated β-galactosidase

被引:73
作者
Li, Xiaokang [1 ]
Qiu, Wenjing [1 ]
Li, Jinwen [1 ]
Chen, Xi [2 ]
Hu, Yulu [2 ]
Gao, Ying [2 ]
Shi, Donglei [1 ]
Li, Xinming [1 ]
Lin, Huiling [1 ]
Hu, Zelan [1 ]
Dong, Guoqiang [3 ]
Sheng, Chunquan [3 ]
Jiang, Bei [4 ]
Xia, Conglong [4 ]
Kim, Chu-Young [5 ]
Guo, Yuan [2 ]
Li, Jian [1 ,4 ]
机构
[1] East China Univ Sci & Technol, Sch Pharm, State Key Lab Bioreactor Engn, Shanghai Key Lab New Drug Design, Shanghai 200237, Peoples R China
[2] Northwest Univ, Coll Chem & Mat Sci, Key Lab Synthet & Nat Funct Mol, Minist Educ, Xian 710127, Peoples R China
[3] Second Mil Med Univ, Sch Pharm, Shanghai 200433, Peoples R China
[4] Dali Univ, Inst Mat Med, Coll Pharm & Chem, Dali 671000, Peoples R China
[5] Univ Texas El Paso, Dept Chem & Biochem, El Paso, TX 79968 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CELLULAR SENESCENCE; RATIONAL DESIGN; CELLS; TRACKING; PHENOTYPE; BIOMARKER; CULTURE; TUMOR; MICE;
D O I
10.1039/d0sc01234c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Human senescence-associated beta-galactosidase (SA-beta-gal), the most widely used biomarker of aging, is a valuable tool for assessing the extent of cell 'healthy aging' and potentially predicting the health life span of an individual. Human SA-beta-gal is an endogenous lysosomal enzyme expressed from GLB1, the catalytic domain of which is very different from that of E. coli beta-gal, a bacterial enzyme encoded by lacZ. However, existing chemical probes for this marker still lack the ability to distinguish human SA-beta-gal from beta-gal of other species, such as bacterial beta-gal, which can yield false positive signals. Here, we show a molecular design strategy to construct fluorescent probes with the above ability with the aid of structure-based steric hindrance adjustment catering to different enzyme pockets. The resulting probes normally work as traditional SA-beta-gal probes, but they are unique in their powerful ability to distinguish human SA-beta-gal from E. coli beta-gal, thus achieving species-selective visualization of human SA-beta-gal for the first time. NIR-emitting fluorescent probe KSL11 as their representative further displays excellent species-selective recognition performance in biological systems, which has been herein verified by testing in senescent cells, in lacZ-transfected cells and in E. coli-beta-gal-contaminated tissue sections of mice. Because of our probes, it was also discovered that SA-beta-gal content in mice increased gradually with age and SA-beta-gal accumulated most in the kidneys among the main organs of naturally aging mice, suggesting that the kidneys are the organs with the most severe aging during natural aging.
引用
收藏
页码:7292 / 7301
页数:10
相关论文
共 50 条
[1]   Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo [J].
Asanuma, Daisuke ;
Sakabe, Masayo ;
Kamiya, Mako ;
Yamamoto, Kyoko ;
Hiratake, Jun ;
Ogawa, Mikako ;
Kosaka, Nobuyuki ;
Choyke, Peter L. ;
Nagano, Tetsuo ;
Kobayashi, Hisataka ;
Urano, Yasuteru .
NATURE COMMUNICATIONS, 2015, 6
[2]   Metformin Retards Aging in C. elegans by Altering Microbial Folate and Methionine Metabolism [J].
Cabreiro, Filipe ;
Au, Catherine ;
Leung, Kit-Yi ;
Vergara-Irigaray, Nuria ;
Cocheme, Helena M. ;
Noori, Tahereh ;
Weinkove, David ;
Schuster, Eugene ;
Greene, Nicholas D. E. ;
Gems, David .
CELL, 2013, 153 (01) :228-239
[3]   Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors [J].
Campisi, J .
CELL, 2005, 120 (04) :513-522
[4]   Cellular senescence: when bad things happen to good cells [J].
Campisi, Judith ;
di Fagagna, Fabrizio d'Adda .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (09) :729-740
[5]  
Chan J, 2012, NAT CHEM, V4, P973, DOI [10.1038/nchem.1500, 10.1038/NCHEM.1500]
[6]   Pharmacological convergence reveals a lipid pathway that regulates C. elegans lifespan [J].
Chen, Alice L. ;
Lum, Kenneth M. ;
Lara-Gonzalez, Pablo ;
Ogasawara, Daisuke ;
Cognetta, Armand B. ;
To, Alan ;
Parsons, William H. ;
Simon, Gabriel M. ;
Desai, Arshad ;
Petrascheck, Michael ;
Bar-Peled, Liron ;
Cravatt, Benjamin F. .
NATURE CHEMICAL BIOLOGY, 2019, 15 (05) :453-+
[7]   Cellular senescence in aging and age-related disease: from mechanisms to therapy [J].
Childs, Bennett G. ;
Durik, Matej ;
Baker, Darren J. ;
van Deursen, Jan M. .
NATURE MEDICINE, 2015, 21 (12) :1424-1435
[8]   Ageing populations: the challenges ahead [J].
Christensen, Kaare ;
Doblhammer, Gabriele ;
Rau, Roland ;
Vaupel, James W. .
LANCET, 2009, 374 (9696) :1196-1208
[9]   Mitochondria are required for pro-ageing features of the senescent phenotype [J].
Correia-Melo, Clara ;
Marques, Francisco D. M. ;
Anderson, Rhys ;
Hewitt, Graeme ;
Hewitt, Rachael ;
Cole, John ;
Carroll, Bernadette M. ;
Miwa, Satomi ;
Birch, Jodie ;
Merz, Alina ;
Rushton, Michael D. ;
Charles, Michelle ;
Jurk, Diana ;
Tait, Stephen W. G. ;
Czapiewski, Rafal ;
Greaves, Laura ;
Nelson, Glyn ;
Bohlooly-Y, Mohammad ;
Rodriguez-Cuenca, Sergio ;
Vidal-Puig, Antonio ;
Mann, Derek ;
Saretzki, Gabriele ;
Quarato, Giovanni ;
Green, Douglas R. ;
Adams, Peter D. ;
von Zglinicki, Thomas ;
Korolchuk, Viktor I. ;
Passos, Joao F. .
EMBO JOURNAL, 2016, 35 (07) :724-742
[10]   Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo [J].
Debacq-Chainiaux, Florence ;
Erusalimsky, Jorge D. ;
Campisi, Judith ;
Toussaint, Olivier .
NATURE PROTOCOLS, 2009, 4 (12) :1798-1806