Rate-limiting reactions determining different activation kinetics of Kv1.2 and Kv2.1 channels

被引:16
作者
Scholle, A
Dugarmaa, S
Zimmer, T
Leonhardt, M
Koopmann, R
Engeland, B
Pongs, O
Benndorf, K [1 ]
机构
[1] Univ Jena, Inst Physiol, D-07740 Jena, Germany
[2] Inst Neurale Signalverarbeitung, Zentrum Mol Neurobiol, D-20251 Hamburg, Germany
关键词
Kv2.1 and Kv1.2 channels; equivalent gating charge; ionic and gating current; activation time course; voltage dependence;
D O I
10.1007/s00232-004-0664-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To identify the mechanisms underlying the faster activation kinetics in Kv1.2 channels compared to Kv2.1 channels, ionic and gating currents were studied in rat Kv1.2 and human Kv2.1 channels heterologously expressed in mammalian cells. At all voltages the time course of the ionic currents could be described by an initial sigmoidal and a subsequent exponential component and both components were faster in Kv1.2 than in Kv2.1 channels. In Kv1.2 channels, the activation time course was more sigmoid at more depolarized potentials, whereas in Kv2.1 channels it was somewhat less sigmoid at more depolarized potentials. In contrast to the ionic currents, the ON gating currents were similarly fast for both channels. The main portion of the measured ON gating charge moved before the ionic currents were activated. The equivalent gating charge of Kv1.2 ionic currents was twice that of Kv2.1 ionic currents, whereas that of Kv1.2 ON gating currents was smaller than that of Kv2.1 ON gating currents. In conclusion, the different activation kinetics of Kv1.2 and Kv2.1 channels are caused by rate-limiting reactions that follow the charge movement recorded from the gating currents. In Kv1.2 channels, the reaction coupling the voltage-sensor movement to the pore opening contributes to rate limitation in a voltage-dependent fashion, whereas in Kv2.1 channels, activation is additionally rate-limited by a slow reaction in the subunit gating.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 40 条
[1]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[2]  
Almers W, 1978, Rev Physiol Biochem Pharmacol, V82, P96, DOI 10.1007/BFb0030498
[3]   MOLECULAR-BASIS OF GATING CHARGE IMMOBILIZATION IN SHAKER POTASSIUM CHANNELS [J].
BEZANILLA, F ;
PEROZO, E ;
PAPAZIAN, DM ;
STEFANI, E .
SCIENCE, 1991, 254 (5032) :679-683
[4]   The voltage sensor in voltage-dependent ion channels [J].
Bezanilla, F .
PHYSIOLOGICAL REVIEWS, 2000, 80 (02) :555-592
[5]   Structural implications of fluorescence quenching in the Shaker K+ channel [J].
Cha, A ;
Bezanilla, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 112 (04) :391-408
[6]   Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence [J].
Cha, A ;
Bezanilla, F .
NEURON, 1997, 19 (05) :1127-1140
[7]   Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase [J].
Chiavegatto, S ;
Dawsons, VL ;
Mamounas, LA ;
Koliatsos, VE ;
Dawson, TM ;
Nelson, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :1277-1281
[8]   Answers and questions from the KvAP structures [J].
Cohen, BE ;
Grabe, M ;
Jan, LY .
NEURON, 2003, 39 (03) :395-400
[9]   S4 charges move close to residues in the pore domain during activation in a K channel [J].
Elinder, F ;
Männikkö, R ;
Larsson, HP .
JOURNAL OF GENERAL PHYSIOLOGY, 2001, 118 (01) :1-10
[10]   THE AROMATIC BINDING-SITE FOR TETRAETHYLAMMONIUM ION ON POTASSIUM CHANNELS [J].
HEGINBOTHAM, L ;
MACKINNON, R .
NEURON, 1992, 8 (03) :483-491