Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system

被引:469
|
作者
Yi, Fengqi [2 ]
Wei, Junjie [2 ]
Shi, Junping [1 ,3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[3] Harbin Normal Univ, Sch Math, Harbin 150025, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Diffusive predator-prey system; Holling type-II functional response; Hopf bifurcation; Steady state bifurcation; Spatially non-homogeneous periodic orbits; Global bifurcation; LYAPUNOV FUNCTIONS; POSITIVE SOLUTIONS; HOPF-BIFURCATION; LIMIT-CYCLES; MODEL; BEHAVIOR; STABILITY;
D O I
10.1016/j.jde.2008.10.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A diffusive predator-prey system with Holling type-II predator functional response subject to Neumann boundary conditions is considered. Hopf and steady state bifurcation analysis are carried out in details. In particular we show the existence of multiple spatially non-homogeneous periodic orbits while the system parameters are all spatially homogeneous. Our results and global bifurcation theory also suggest the existence of loops of spatially non-homogeneous periodic orbits and steady state solutions. These results provide theoretical evidences to the complex spatiotemporal dynamics found by numerical simulation. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1944 / 1977
页数:34
相关论文
共 50 条
  • [1] Spatiotemporal Patterns of a Homogeneous Diffusive Predator-Prey System with Holling Type III Functional Response
    Wang, Jinfeng
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (04) : 1383 - 1409
  • [2] Spatiotemporal patterns in a diffusive predator-prey system with nonlocal intraspecific prey competition
    Geng, Dongxu
    Jiang, Weihua
    Lou, Yuan
    Wang, Hongbin
    STUDIES IN APPLIED MATHEMATICS, 2022, 148 (01) : 396 - 432
  • [3] Bifurcation Analysis and Spatiotemporal Patterns in a Diffusive Predator-Prey Model
    Hu, Guangping
    Li, Xiaoling
    Lu, Shiping
    Wang, Yuepeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (06):
  • [4] Bifurcation and spatio-temporal patterns in a diffusive predator-prey system
    Guo, Shangjiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 42 : 448 - 477
  • [5] Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System
    Lin, Meng
    Chai, Yanyou
    Yang, Xuguang
    Wang, Yufeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [6] Diffusive induced global dynamics and bifurcation in a predator-prey system
    Li, Nadia N.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [7] Bifurcation analysis of a diffusive predator-prey system with nonmonotonic functional response
    Sounvoravong, Bounsanong
    Gao, Jianping
    Guo, Shangjiang
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2901 - 2918
  • [8] A diffusive predator-prey system with prey refuge and predator cannibalism
    Zhang, Yuxuan
    Rong, Xinmiao
    Zhang, Jimin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (03) : 1445 - 1470
  • [9] Spatiotemporal Patterns in a Diffusive Predator-Prey Model with Prey Social Behavior
    Salih Djilali
    Soufiane Bentout
    Acta Applicandae Mathematicae, 2020, 169 : 125 - 143
  • [10] Spatiotemporal Patterns in a Diffusive Predator-Prey Model with Prey Social Behavior
    Djilali, Salih
    Bentout, Soufiane
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 125 - 143