EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS

被引:24
作者
Berry, Dominic W. [1 ]
Childs, Andrew M. [2 ,3 ,4 ,5 ]
Cleve, Richard [3 ,6 ,7 ]
Kothari, Robin [3 ,6 ,8 ]
Somma, Rolando D. [9 ]
机构
[1] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Maryland, Dept Comp Sci, Inst Adv Comp Studies, College Pk, MD 20742 USA
[5] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[6] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[7] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
[8] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[9] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM QUERY ALGORITHMS; COMPUTATION; FORMULA; PHYSICS; WALK;
D O I
10.1017/fms.2017.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a quantum algorithm for simulating the dynamics of sparse Hamiltonians with complexity sublogarithmic in the inverse error, an exponential improvement over previous methods. Specifically, we show that a d- sparse Hamiltonian H acting on n qubits can be simulated for time t with precision epsilon using O (tau(log(tau/epsilon)/log log(tau/epsilon))) queries and O(tau(log(2)(tau/epsilon)log log(tau/epsilon))n) additional 2- qubit gates, where tau = d(2) \\H\\(max)t. Unlike previous approaches based on product formulas, the query complexity is independent of the number of qubits acted on, and for timevarying Hamiltonians, the gate complexity is logarithmic in the norm of the derivative of the Hamiltonian. Our algorithm is based on a significantly improved simulation of the continuous-and fractional-query models using discrete quantum queries, showing that the former models are not much more powerful than the discrete model even for very small error. We also simplify the analysis of this conversion, avoiding the need for a complex fault-correction procedure. Our simplification relies on a new form of 'oblivious amplitude amplification' that can be applied even though the reflection about the input state is unavailable. Finally, we prove new lower bounds showing that our algorithms are optimal as a function of the error.
引用
收藏
页数:40
相关论文
共 44 条
[1]  
AHARONOV A., 2003, P 35 ANN ACM S THEOR, P20, DOI DOI 10.1145/780542.780546
[2]   ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER [J].
Ambainis, A. ;
Childs, A. M. ;
Reichardt, B. W. ;
Spalek, R. ;
Zhang, S. .
SIAM JOURNAL ON COMPUTING, 2010, 39 (06) :2513-2530
[3]   Symmetry-assisted adversaries for quantum state generation [J].
Ambainis, Andris ;
Magnin, Loick ;
Roetteler, Martin ;
Roland, Jeremie .
2011 IEEE 26TH ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2011, :167-177
[4]  
[Anonymous], 2009, Theory ofComputing
[5]  
[Anonymous], ARXIV150601029
[6]   Exponentially more precise quantum simulation of fermions in second quantization [J].
Babbush, Ryan ;
Berry, Dominic W. ;
Kivlichan, Ian D. ;
Wei, Annie Y. ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18
[7]   Quantum lower bounds by polynomials [J].
Beals, R ;
Buhrman, H ;
Cleve, R ;
Mosca, M ;
De Wolf, R .
JOURNAL OF THE ACM, 2001, 48 (04) :778-797
[8]  
Belovs Aleksandrs, 2015, ARXIV150406943
[9]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[10]   Hamiltonian simulation with nearly optimal dependence on all parameters [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Kothari, Robin .
2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, :792-809