MAXIMAL REGULARITY FOR DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN PERIODIC VECTOR-VALUED FUNCTION SPACES

被引:36
作者
Lizama, Carlos [1 ]
Ponce, Rodrigo [2 ]
机构
[1] Univ Santiago Chile, Dept Matemat & Ciencia Computac, Santiago, Chile
[2] Univ Talca, Inst Matemat & Fis, Talca, Chile
关键词
differential equations with delay; operator-valued Fourier multipliers; R-boundedness; UMD spaces; Besov vector-valued spaces; Lebesgue vector-valued spaces; FOURIER MULTIPLIERS; INTEGRODIFFERENTIAL EQUATIONS; BANACH-SPACES; BESOV-SPACES;
D O I
10.1017/S0013091513000606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and M be closed linear operators defined on a complex Banach space X and let a is an element of L-1(R+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation d/dt (Mu(t)) = Au(t) + integral(t)(-infinity) a(t - s)Au(s)ds + f(t), t > 0, with initial condition Mu(0) = Mu(2 pi), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel-Lizorkin and Lebesgue vector-valued function spaces.
引用
收藏
页码:853 / 871
页数:19
相关论文
共 25 条
[1]  
Amann H, 1997, MATH NACHR, V186, P5
[3]  
[Anonymous], 1989, Boundary Stabilization of Thin Plates
[4]  
[Anonymous], 1993, MONOGR MATH
[5]  
[Anonymous], 2003, MEMOIRS AM MATH SOC
[6]  
[Anonymous], 1967, GRUNDLEHREN MATH WIS
[7]   Operator-valued Fourier multipliers on periodic Besov spaces and applications [J].
Arendt, W ;
Bu, SQ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :15-33
[8]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[9]  
Barbu V., 1997, REND INSTIT MAT U TR, VXXVII, P29
[10]   SOME REMARKS ON BANACH-SPACES IN WHICH MARTINGALE DIFFERENCE-SEQUENCES ARE UNCONDITIONAL [J].
BOURGAIN, J .
ARKIV FOR MATEMATIK, 1983, 21 (02) :163-168