Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography

被引:38
作者
Carroll, Keith M. [1 ,2 ]
Giordano, Anthony J. [3 ]
Wang, Debin [4 ]
Kodali, Vamsi K. [5 ]
Scrimgeour, Jan [1 ,2 ]
King, William P. [6 ]
Marder, Seth R. [3 ]
Riedo, Elisa [1 ,3 ]
Curtis, Jennifer E. [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Parker H Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[5] Pacific NW Natl Lab, Richland, WA 99352 USA
[6] Univ Illinois Urbana Champagne, Dept Mech Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
DIP-PEN NANOLITHOGRAPHY; FORCE MICROSCOPY; LITHOGRAPHY; GENERATION; COMPLEX; POLYMERS; SURFACES;
D O I
10.1021/la400996w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Production of chemical concentration gradients on the submicrometer scale remains a formidable challenge, despite the broad range of potential applications and their ubiquity throughout nature. We present a strategy to quantitatively prescribe spatial variations in functional group concentration using ThermoChemical NanoLithography (TCNL). The approach uses a heated cantilever to drive a localized nanoscale chemical reaction at an interface, where a reactant is transformed into a product. We show using friction, force microscopy that localized gradients in the product concentration have a spatial resolution of similar to 20 nm where the entire concentration profile is confined to sub-180 nm. To gain quantitative control over the concentration, we introduce a chemical kinetics model of the thermally driven nanoreaction that shows excellent agreement with experiments. The comparison provides a calibration of the nonlinear dependence of product concentration versus temperature, which we use to design two-dimensional temperature maps encoding the prescription for linear and nonlinear gradients. The resultant chemical nanopatterns show high fidelity to the user-defined patterns, including the ability to realize complex chemical patterns with arbitrary variations in peak concentration with a spatial resolution of 180 nm or better. While this work focuses on producing chemical gradients of amine groups, other functionalities are a straightforward modification. We envision that using the basic scheme introduced here, quantitative TCNL will be capable of patterning gradients of other exploitable physical or chemical properties such as fluorescence in conjugated polymers and conductivity in graphene. The access to submicrometer chemical concentration and gradient patterning provides a new dimension of control for nanolithography.
引用
收藏
页码:8675 / 8682
页数:8
相关论文
共 33 条
  • [1] Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing
    Arnold, Marco
    Hirschfeld-Warneken, Vera C.
    Lohmueller, Theobald
    Heil, Patrick
    Bluemmel, Jacques
    Cavalcanti-Adam, Elisabetta A.
    Lopez-Garcia, Monica
    Walther, Paul
    Kessler, Horst
    Geiger, Benjamin
    Spatz, Joachim P.
    [J]. NANO LETTERS, 2008, 8 (07) : 2063 - 2069
  • [2] Patterning protein concentration using laser-assisted adsorption by photobleaching, LAPAP
    Belisle, Jonathan M.
    Correia, James P.
    Wiseman, Paul W.
    Kennedy, Timothy E.
    Costantino, Santiago
    [J]. LAB ON A CHIP, 2008, 8 (12) : 2164 - 2167
  • [3] HOW TO MAKE WATER RUN UPHILL
    CHAUDHURY, MK
    WHITESIDES, GM
    [J]. SCIENCE, 1992, 256 (5063) : 1539 - 1541
  • [4] Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography
    Coulembier, Olivier
    Knoll, Armin
    Pires, David
    Gotsmann, Bernd
    Duerig, Urs
    Frommer, Jane
    Miller, Robert D.
    Dubois, Philippe
    Hedrick, James L.
    [J]. MACROMOLECULES, 2010, 43 (01) : 572 - 574
  • [5] Generation of gradients having complex shapes using microfluidic networks
    Dertinger, SKW
    Chiu, DT
    Jeon, NL
    Whitesides, GM
    [J]. ANALYTICAL CHEMISTRY, 2001, 73 (06) : 1240 - 1246
  • [6] Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation
    Duvigneau, Joost
    Schoenherr, Holger
    Vancso, G. Julius
    [J]. LANGMUIR, 2008, 24 (19) : 10825 - 10832
  • [7] Nanoscale Thermal AFM of Polymers: Transient Heat Flow Effects
    Duvigneau, Joost
    Schonherr, Holger
    Vancso, G. Julius
    [J]. ACS NANO, 2010, 4 (11) : 6932 - 6940
  • [8] Thermochemical nanopatterning of organic semiconductors
    Fenwick, Oliver
    Bozec, Laurent
    Credgington, Dan
    Hammiche, Azzedine
    Lazzerini, Giovanni Mattia
    Silberberg, Yaron R.
    Cacialli, Franco
    [J]. NATURE NANOTECHNOLOGY, 2009, 4 (10) : 664 - 668
  • [9] Fuierer RR, 2002, ADV MATER, V14, P154, DOI 10.1002/1521-4095(20020116)14:2<154::AID-ADMA154>3.0.CO
  • [10] 2-B