Prescribing a multistage analytical method to a prey-predator dynamical system

被引:12
作者
Goh, S. M. [1 ]
Noorani, M. S. M. [2 ]
Hashim, I. [2 ]
机构
[1] Univ Tenaga Nas, Coll Engn, Dept Engn Sci & Math, Kajang 43009, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Sch Math Sci, Ukm Bangi Selangor 43600, Malaysia
关键词
Variational iteration method; Prey-predator model; Fourth-order Runge-Kutta method;
D O I
10.1016/j.physleta.2008.11.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article discusses the effectiveness of a fresh analytical method in solving a prey-predator problem, which is described as a system of two nonlinear ordinary differential equations. The method of interest is the multistage variational iteration method (MVIM), which provides a slight modification of the classical variational iteration method (VIM). We shall compare solutions of the classical VIM along with MVIM and match them against the conventional numerical method, Runge-Kutta (RK4) (fourth-order). (C) 2008 Published by Elsevier B.V.
引用
收藏
页码:107 / 110
页数:4
相关论文
共 26 条
[1]   New applications of variational iteration method [J].
Abdou, MA ;
Soliman, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 211 (1-2) :1-8
[2]   Application of variational iteration method to the generalized Burgers-Huxley equation [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. .
CHAOS SOLITONS & FRACTALS, 2008, 36 (03) :660-663
[3]  
Batiha B., 2007, PHYS SCR, V76, P1
[4]   A new approach to the solution of the prey and predator problem and comparison of the results with the Adomian method [J].
Biazar, J ;
Ilie, M ;
Khoshkenar, A .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (01) :486-491
[5]   A computational method for solution of the prey and predator problem [J].
Biazar, J ;
Montazeri, R .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) :841-847
[6]   Solution of prey-predator problem by numeric-analytic technique [J].
Chowdhury, M. S. H. ;
Hashim, I. ;
Mawa, S. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1008-1012
[7]   Efficacy of variational iteration method for chaotic Genesio system - Classical and multistage approach [J].
Goh, S. M. ;
Noorani, M. S. M. ;
Hashim, I. .
CHAOS SOLITONS & FRACTALS, 2009, 40 (05) :2152-2159
[8]  
GOH SM, NONLINEAR A IN PRESS, DOI DOI 10.1016/J.N0NRWA.2008.03.025
[9]  
He J. H., 2006, THESIS DE VERLAG INT
[10]   Variational iteration method for autonomous ordinary differential systems [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 114 (2-3) :115-123