Diameter Bounded Equal Measure Partitions of Ahlfors Regular Metric Measure Spaces

被引:20
作者
Gigante, Giacomo [1 ]
Leopardi, Paul [2 ]
机构
[1] Univ Bergamo, Bergamo, Italy
[2] Univ Newcastle, Callaghan, NSW, Australia
关键词
Partition; Measure; Diameter; Ahlfors regular; Metric measure space; POINTS; ENERGY;
D O I
10.1007/s00454-016-9834-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The algorithm devised by Feige and Schechtman for partitioning higher dimensional spheres into regions of equal measure and small diameter is combined with David's and Christ's constructions of dyadic cubes to yield a partition algorithm suitable to any connected Ahlfors regular metric measure space of finite measure.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 26 条
[1]  
[Anonymous], THESIS
[2]  
ASSOUAD P, 1983, B SOC MATH FR, V111, P429
[3]  
Beck J., 1987, CAMBRIDGE TRACTS MAT
[4]  
Brandolini L., ARXIV13086775V2
[5]  
Brandolini L, 2014, ANN SCUOLA NORM-SCI, V13, P889
[6]  
Christ M., 1990, Colloq. Math., V61, P601
[7]  
David G., 1988, REV MAT IBEROAM, V4, P73
[8]  
DAVID G, 1997, OXFORD LECT SERIES M
[9]  
David G., 1991, Lecture Notes in Mathematics
[10]   On the optimality of the random hyperplane rounding technique for MAX CUT [J].
Feige, U ;
Schechtman, G .
RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (03) :403-440