Interestingness Improvement of Face Images by Learning Visual Saliency

被引:0
作者
Dao Nam Anh [1 ]
机构
[1] Elect Power Univ, 235 Hoang Quoc Viet Rd, Hanoi, Vietnam
关键词
computer vision; visual attention; face image; personal characteristics; interestingness; MEMORABILITY; ATTENTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Connecting features of face images with the interestingness of a face may assist in a range of applications such as intelligent visual human-machine communication. To enable the connection, we use interestingness and image features in combination with machine learning techniques. In this paper, we use visual saliency of face images as learning features to classify the interestingness of the images. Applying multiple saliency detection techniques specifically to objects in the images allows us to create a database of saliency-based features. Consistent estimation of facial interestingness and using multiple saliency methods contribute to estimate, and exclusively, to modify the interestingness of the image. To investigate interestingness - one of the personal characteristics in a face image, a large benchmark face database is tested using our method. Taken together, the method may advance prospects for further research incorporating other personal characteristics and visual attention related to face images.
引用
收藏
页码:630 / 637
页数:8
相关论文
共 23 条
[1]   Review of Methods to Predict Social Image Interestingness and Memorability [J].
Amengual, Xesca ;
Bosch, Anna ;
Lluis de la Rosa, Josep .
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT I, 2015, 9256 :64-76
[2]  
Anh D. N., 2018, LECT NOTES COMPUTER, V11248, P3
[3]  
Anh D. N., 2018, 2018 1 INT C MULT AN, P1, DOI [10.1109/MAPR. 2018.8337522, DOI 10.1109/MAPR.2018.8337522]
[4]   Identifying Individual Facial Expressions by Deconstructing a Neural Network [J].
Arbabzadah, Farhad ;
Montavon, Gregoire ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PATTERN RECOGNITION, GCPR 2016, 2016, 9796 :344-354
[5]   The Intrinsic Memorability of Face Photographs [J].
Bainbridge, Wilma A. ;
Isola, Phillip ;
Oliva, Aude .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-GENERAL, 2013, 142 (04) :1323-1334
[6]   Deep Learning for Image Memorability Prediction: the Emotional Bias [J].
Baveye, Yoann ;
Cohendet, Romain ;
Da Silva, Matthieu Perreira ;
Le Callet, Patrick .
MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, :491-495
[7]   Predicting memorability of images using attention-driven spatial pooling and image semantics [J].
Celikkale, Bora ;
Erdem, Aykut ;
Erdem, Erkut .
IMAGE AND VISION COMPUTING, 2015, 42 :35-46
[8]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[9]  
Dao Nam Anh, 2017, International Journal of Natural Computing Research, V6, P58, DOI 10.4018/IJNCR.2017070104
[10]  
Demarty CH, 2017, MULTIMED SYST APPL, P233, DOI 10.1007/978-3-319-57687-9_10