Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development

被引:122
作者
Zhang, Jianxia [1 ,2 ]
Wu, Kunlin [1 ]
Zeng, Songjun [1 ]
Teixeira da Silva, Jaime A. [3 ,4 ]
Zhao, Xiaolan [5 ]
Tian, Chang-En [6 ]
Xia, Haoqiang [7 ]
Duan, Jun [1 ]
机构
[1] Chinese Acad Sci, South China Bot Garden, Key Lab South China Agr Plant Genet & Breeding, Guangzhou 510650, Guangdong, Peoples R China
[2] Chinese Acad Sci, South China Bot Garden, Key Lab Plant Resources Conservat & Sustainable U, Guangzhou 510650, Guangdong, Peoples R China
[3] Kagawa Univ, Fac Agr, Miki, Kagawa 7610795, Japan
[4] Kagawa Univ, Grad Sch Agr, Miki, Kagawa 7610795, Japan
[5] South China Agr Univ, Guangdong Key Lab Innovat Dev & Utilizat Forest P, Guangzhou 510642, Guangdong, Peoples R China
[6] Guangzhou Univ, Sch Life Sci, Guangzhou 510006, Guangdong, Peoples R China
[7] Guangzhou Genedenovo Biotechnol Co Ltd, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Floral development; Flowering time; Digital gene expression; Transcriptome; Cymbidium sinense; FLOWERING-TIME GENES; HOMEOTIC GENE; CIRCADIAN CLOCK; INFLORESCENCE DEVELOPMENT; MERISTEM IDENTITY; ARABIDOPSIS FLOWER; PLANT ARCHITECTURE; DISTINCT ROLES; CONSTANS; PROTEIN;
D O I
10.1186/1471-2164-14-279
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. Results: In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. Conclusion: RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid.
引用
收藏
页数:17
相关论文
共 71 条
[1]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[2]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[3]   TERMINAL-FLOWER - A GENE AFFECTING INFLORESCENCE DEVELOPMENT IN ARABIDOPSIS-THALIANA [J].
ALVAREZ, J ;
GULI, CL ;
YU, XH ;
SMYTH, DR .
PLANT JOURNAL, 1992, 2 (01) :103-116
[4]   Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo [J].
Amador, V ;
Monte, E ;
García-Martínez, JL ;
Prat, S .
CELL, 2001, 106 (03) :343-354
[5]   The significance of digital gene expression profiles [J].
Audic, S ;
Claverie, JM .
GENOME RESEARCH, 1997, 7 (10) :986-995
[6]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[7]  
BERNIER G, 1993, PLANT CELL, V5, P1147, DOI 10.1105/tpc.5.10.1147
[8]  
BOWMAN JL, 1993, DEVELOPMENT, V119, P721
[9]   Inflorescence commitment and architecture in Arabidopsis [J].
Bradley, D ;
Ratcliffe, O ;
Vincent, C ;
Carpenter, R ;
Coen, E .
SCIENCE, 1997, 275 (5296) :80-83
[10]   The phototropin family of photoreceptors [J].
Briggs, WR ;
Beck, CF ;
Cashmore, AR ;
Christie, JM ;
Hughes, J ;
Jarillo, JA ;
Kagawa, T ;
Kanegae, H ;
Liscum, E ;
Nagatani, A ;
Okada, K ;
Salomon, M ;
Rüdiger, W ;
Sakai, T ;
Takano, M ;
Wada, M ;
Watson, JC .
PLANT CELL, 2001, 13 (05) :993-997