Limit Distribution for a Time-Inhomogeneous 2-State Quantum Walk

被引:4
作者
Machida, Takuya [1 ]
机构
[1] Meiji Univ, Japan Soc Promot Sci, Meiji Inst Adv Study Math Sci, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
关键词
Limit Distribution; Localization; 2-State Quantum Walk; THEOREMS;
D O I
10.1166/jctn.2013.3090
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We consider 2-state quantum walks (QWs) on the line, which are defined by two matrices. One of the matrices operates the walk in certain intervals. In the usual QWs starting from the origin, localization does not occur at all. However, our walk can be localized around the origin. In this paper, we present some limit distributions for the walk.
引用
收藏
页码:1571 / 1578
页数:8
相关论文
共 21 条
  • [1] Conditional strategies in iterated quantum games
    Abal, G.
    Donangelo, R.
    Fort, H.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (21) : 5326 - 5332
  • [2] QUANTUM RANDOM-WALKS
    AHARONOV, Y
    DAVIDOVICH, L
    ZAGURY, N
    [J]. PHYSICAL REVIEW A, 1993, 48 (02): : 1687 - 1690
  • [3] Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI 10.1145/380752.380757.
  • [4] [Anonymous], 2009, Theory ofComputing
  • [5] Quantum walk with a time-dependent coin
    Banuls, M. C.
    Navarrete, C.
    Perez, A.
    Roldan, Eugenio
    Soriano, J. C.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [6] Quantum walks driven by many coins
    Brun, TA
    Carteret, HA
    Ambainis, A
    [J]. PHYSICAL REVIEW A, 2003, 67 (05) : 17
  • [7] An Example of the Difference Between Quantum and Classical Random Walks
    Childs, Andrew M.
    Farhi, Edward
    Gutmann, Sam
    [J]. QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 35 - 43
  • [8] Quantum computation and decision trees
    Farhi, E
    Gutmann, S
    [J]. PHYSICAL REVIEW A, 1998, 58 (02): : 915 - 928
  • [9] Weak limits for quantum random walks
    Grimmett, G
    Janson, S
    Scudo, PF
    [J]. PHYSICAL REVIEW E, 2004, 69 (02): : 026119 - 1