Classification theorems for hermitian forms, the Rost kernel and Hasse principle over fields with cd2(k) ≤ 3

被引:10
作者
Preeti, R. [1 ]
机构
[1] Indian Inst Technol, Bombay 400076, Maharashtra, India
关键词
Algebras with involution; Galois cohomology of classical groups; Hasse principle; CLASSICAL-GROUPS; INVARIANT;
D O I
10.1016/j.jalgebra.2013.02.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove classification theorems for hermitian forms over some central simple algebras with involution over a field k with cd(2)(k) <= 3. We apply these results to show the triviality of the kernel of the Rost invariant for the classical algebraic groups associated to such hermitian forms over k. We also deduce a Hasse principle for algebraic groups defined over function fields of curves over p-adic fields thus proving a conjecture due to Colliot-Thelene-Parimala-Suresh for a large class of groups. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:294 / 313
页数:20
相关论文
共 27 条
[1]  
[Anonymous], MATH USSR IZV
[2]  
[Anonymous], 2002, ALGEBRA ANALIZ
[3]  
[Anonymous], COMMENT MAT IN PRESS
[4]   FIELDS OF COHOMOLOGICAL 2-DIMENSION-3 [J].
ARASON, JK ;
ELMAN, R ;
JACOB, B .
MATHEMATISCHE ANNALEN, 1986, 274 (04) :649-657
[5]   INVARIANT HERMITIC FORMS OVER INCLINED BODIES [J].
BARTELS, HJ .
MATHEMATISCHE ANNALEN, 1975, 215 (03) :269-288
[6]   Classical groups and the Hasse principle [J].
Bayer-Fluckiger, E ;
Parimala, R .
ANNALS OF MATHEMATICS, 1998, 147 (03) :651-693
[7]   GALOIS COHOMOLOGY OF THE CLASSICAL-GROUPS OVER FIELDS OF COHOMOLOGICAL DIMENSION LESS-THAN-OR-EQUAL-TO-2 [J].
BAYERFLUCKIGER, E ;
PARIMALA, R .
INVENTIONES MATHEMATICAE, 1995, 122 (02) :195-229
[8]   FORMS IN ODD DEGREE EXTENSIONS AND SELF-DUAL NORMAL BASES [J].
BAYERFLUCKIGER, E ;
LENSTRA, HW .
AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (03) :359-373
[9]   Rost cohomological variants with positive characteristic [J].
Gille, P .
K-THEORY, 2000, 21 (01) :57-100
[10]  
Heath-Brown R., J REINE ANG IN PRESS