Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids

被引:16
|
作者
Eleuteri, Michela [1 ]
Rocca, Elisabetta [2 ,3 ]
Schimperna, Giulio [4 ]
机构
[1] Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[3] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[4] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
关键词
Cahn-Hilliard; Navier-Stokes; Incompressible non-isothermal binary fluid; Global-in-time existence; A-priori estimates; PHASE-FIELD MODEL; MULTIPHASE FLOW; ATTRACTORS; VISCOSITY; MIXTURES; SYSTEM;
D O I
10.1016/j.anihpc.2015.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a thermodynamically consistent diffuse interface model describing two-phase flows of incompressible fluids in a non-isothermal setting. The model was recently introduced in [11] where existence of weak solutions was proved in three space dimensions. Here, we aim to study the properties of solutions in the two-dimensional case. In particular, we can show existence of global in time solutions satisfying a stronger formulation of the model with respect to the one considered in [11]. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1431 / 1454
页数:24
相关论文
共 50 条
  • [41] A two-dimensional two-phase model of a PEM fuel cell
    Lin, GY
    Nguyen, TV
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) : A372 - A382
  • [42] Existence of weak solutions for nonisothermal immiscible compressible two-phase flow in porous media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85
  • [43] Two-phase fluids in collision of incompressible inviscid fluids effluxing from two nozzles
    Wang, Yongfu
    Xiang, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (11) : 6783 - 6830
  • [44] Improved lattice Boltzmann model for incompressible two-dimensional steady flows
    Lin, ZF
    Fang, HP
    Tao, RB
    PHYSICAL REVIEW E, 1996, 54 (06): : 6323 - 6330
  • [45] EXISTENCE OF GLOBAL-SOLUTIONS FOR TWO-DIMENSIONAL VISCOUS COMPRESSIBLE FLOWS
    PADULA, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (01) : 1 - 20
  • [46] Existence of weak solutions for a diffuse interface model of non-Newtonian two-phase flows
    Abels, Helmut
    Diening, Lars
    Terasawa, Yutaka
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 15 : 149 - 157
  • [47] Global Solutions of Two-Dimensional Incompressible Viscoelastic Flows with Discontinuous Initial Data
    Hu, Xianpeng
    Lin, Fanghua
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (02) : 372 - 404
  • [48] A sharp interface method for incompressible two-phase flows
    Sussman, M.
    Smith, K. M.
    Hussaini, M. Y.
    Ohta, M.
    Zhi-Wei, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 221 (02) : 469 - 505
  • [49] Discontinuous Galerkin Method for Incompressible Two-Phase Flows
    Gerstenberger, Janick
    Burbulla, Samuel
    Kroner, Dietmar
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 675 - 683
  • [50] A hybrid scheme for computing incompressible two-phase flows
    周军
    蔡力
    周凤岐
    Chinese Physics B, 2008, 17 (05) : 1535 - 1544