LASER SCANNER INTENSITY CALIBRATION BASED ON ARTIFICIAL NEURAL NETWORKS

被引:0
作者
de Figueiredo, Rodrigo M. [1 ]
Veronez, Mauricio R. [1 ,2 ]
Tognoli, Francisco M. W. [1 ,2 ]
da Silva, Marcio R. [2 ]
Bordin, Fabiane
Gonzaga, Luiz, Jr. [3 ]
Koch, Ismael [2 ]
Marson, Fernando P. [2 ]
Larocca, Ana P. C. [3 ]
机构
[1] Vale Rio dos Sinos Univ UNISINOS, Grad Program Geol, Sao Leopoldo, Brazil
[2] Univ Vale Rio dos Sinos, VIZLab Adv Visualizat & Geoinformat Lab, Sao Leopoldo, Brazil
[3] Univ Sao Paulo, Sao Carlos Engn Sch, Grad Program Transportat Engn, Sao Carlos, SP, Brazil
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
LiDAR; Artificial Neural Networks; Laser Intensity; Calibration;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this study, we propose a method to calibrate the laser pulse return intensity of a Terrestrial Laser Scanner (TES) based on Artificial Neural Networks. The laser pulse return intensity has an important rule on rocks types' classification when using Digital Outcrops Models (DOM) and has been the focus of much research by the geological community as it helps the geological interpretation in outcrops. In our experiment, we used a TLS IIris 3D model with a wavelength of 1,535 nn. Our method has shown good efficiency for the calibration of the laser pulse return intensity, demonstrating a strong applicability for classification studies of rock types on Digital Outcrops Models.
引用
收藏
页码:1716 / 1719
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 2012, ADV MATER RES-KR, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/AMR.403-408.748
[2]   Digital surface modelling by airborne laser scanning and digital photogrammetry for glacier monitoring [J].
Baltsavias, EP ;
Favey, E ;
Bauder, A ;
Bösch, H ;
Pateraki, M .
PHOTOGRAMMETRIC RECORD, 2001, 17 (98) :243-270
[3]  
Culclasure Andrew, 2013, USING NEURAL NETWORK
[4]  
Haykin S., 2009, NEURAL NETWORKS LEAR
[5]   Spectral Pattern Classification in Lidar Data for Rock Identification in Outcrops [J].
Inocencio, Leonardo Campos ;
Veronez, Mauricio Roberto ;
Wohnrath Tognoli, Francisco Manoel ;
de Souza, Marcelo Kehl ;
da Silva, Reginaldo Macedonio ;
Gonzaga, Luiz, Jr. ;
Blum Silveira, Cesar Leonardo .
SCIENTIFIC WORLD JOURNAL, 2014,
[6]   Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)-The Arkitsa fault, central Greece, as a case study [J].
Jones, R. R. ;
Kokkalas, S. ;
McCaffrey, K. J. W. .
GEOSPHERE, 2009, 5 (06) :465-482
[7]  
Jutzi B., 2009, Laserscanning, International Archives of Photogrammetry and Remote Sensing, V38, P213
[8]   Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets [J].
Kaasalainen, Sanna ;
Hyyppa, Hannu ;
Kukko, Antero ;
Litkey, Paula ;
Ahokas, Eero ;
Hyyppa, Juha ;
Lehner, Hubert ;
Jaakkola, Anttoni ;
Suomalainen, Juha ;
Akujarvi, Altti ;
Kaasalainen, Mikko ;
Pyysalo, Ulla .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (02) :588-598
[9]  
Li Kehuang, 2014, IEEE INT C AC SPEECH
[10]  
Rarity F., 2014, LiDAR-based digital outcrops for sedimentological analysis: workflows and techniques, V387, P153, DOI DOI 10.1144/SP387.5