CATEGORIES OF COMODULES AND CHAIN COMPLEXES OF MODULES

被引:2
作者
Ardizzoni, A. [1 ]
El Kaoutit, L. [2 ]
Menini, C. [3 ]
机构
[1] Univ Turin, Dept Math Giuseppe Peano, I-10123 Turin, Italy
[2] Univ Granada, Dept Algebra, Fac Educ & Humanidades Ceuta, E-51002 Ceuta, Spain
[3] Univ Ferrara, Dept Math, I-44121 Ferrara, Italy
关键词
Monoidal categories; chain complexes; ring extension; bialgebroids; Tannakian categories; COMATRIX CORINGS; STRUCTURE THEOREM; REPRESENTATIONS; BIALGEBRAS; ALGEBRAS; RINGS;
D O I
10.1142/S0129167X12501091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L(A) denote the coendomorphism left R-bialgebroid associated to a left finitely generated and projective extension of rings R -> A with identities. We show that the category of left comodules over an epimorphic image of L(A) is equivalent to the category of chain complexes of left R-modules. This equivalence is monoidal whenever R is commutative and A is an R-algebra. This is a generalization, using entirely new tools, of results by Pareigis and Tambara for chain complexes of vector spaces over fields. Our approach relies heavily on the noncommutative theory of Tannaka reconstruction, and the generalized faithfully flat descent for small additive categories, or rings with enough orthogonal idempotents.
引用
收藏
页数:36
相关论文
共 30 条
[11]  
Deligne P., 1990, Birkhauser, V87, P111, DOI [10.1007/978-0-8176-4575-53, 10, DOI 10.1007/978-0-8176-4575-53]
[12]   HOMOLOGY OF SYMMETRIC PRODUCTS AND OTHER FUNCTORS OF COMPLEXES [J].
DOLD, A .
ANNALS OF MATHEMATICS, 1958, 68 (01) :54-80
[13]  
El Kaoutit L, 2004, ALGEBR COLLOQ, V11, P427
[14]  
El Kaoutit L, 2004, INT MATH RES NOTICES, V2004, P2017
[15]   Comatrix corings:: Galois corings, descent theory, and a structure theorem for cosemisimple corings [J].
El Kaoutit, L ;
Gómez-Torrecillas, J .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (04) :887-906
[16]   Corings over rings with local units [J].
El Kaoutit, L. .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (05) :726-747
[17]  
Gabriel P., 1962, Bull. Soc. Math. France, V90, P323
[18]  
Goerss Paul G., 1999, Progress in Mathematics, V174
[19]  
Gomez-Torrecillas J, 2007, ALGEBR REPRESENT TH, V10, P271, DOI 10.1007/S10468-007-9050-9
[20]   Tannaka-Krein duality for Hopf algebroids [J].
Hai, Phung Ho .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 167 (01) :193-225