A microelectronic approach to identifying and modeling biological noise

被引:0
|
作者
Gendrault, Yves [1 ,2 ]
Madec, Morgan [1 ]
Lallement, Christophe [1 ]
Haiech, Jacques [3 ]
机构
[1] Univ Strasbourg, CNRS, Lab ICube, UMR 7357, Bd Sebastien Brant,BP 10413, F-67412 Illkirch Graffenstaden, France
[2] ECAM Strasbourg Europe, 2 Rue Madrid, F-67300 Schiltigheim, France
[3] LIT, UMR 7200, 74 Route Rhin, F-67400 Illkirch Graffenstaden, France
来源
2017 IEEE 15TH INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS) | 2017年
关键词
system modeling; synthetic biology; biological noise; ODE; LANGUAGES; MEMBRANE; CIRCUITS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One issue of synthetic biology concerns the ability to predict the functioning of a new biosystem, right from the design stage. To do so, many models are developed. This paper focuses on the phenomenon of biological noise, which is actually not integrated in the standard models. This paper describes the different biological noises and draws a comparison between them and microelectronic noises. The developed models are presented and their addition to standard ODE equations is illustrated on two systems widely used in synthetic biology: the protein synthesis and an oscillator.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 50 条
  • [1] NOISE IN MICROELECTRONIC ACTIVE RC FILTERS
    BOZIC, SM
    EMMETT, SG
    MICROELECTRONICS AND RELIABILITY, 1971, 10 (01): : 31 - &
  • [2] Identifying transistor roles in teaching microelectronic circuits
    Andreatos, A. S.
    Kliros, G. S.
    CIRCUITS AND SYSTEMS FOR SIGNAL PROCESSING , INFORMATION AND COMMUNICATION TECHNOLOGIES, AND POWER SOURCES AND SYSTEMS, VOL 1 AND 2, PROCEEDINGS, 2006, : 1221 - 1224
  • [3] A Formal Approach to Identifying the Impact of Noise on Neural Networks
    Bhatti, Iram Tariq
    Naseer, Mahum
    Shafique, Muhammad
    Hasan, Osman
    COMMUNICATIONS OF THE ACM, 2022, 65 (11) : 70 - 73
  • [4] Probabilistic Approach for Modeling and Identifying Driving Situations
    Schneider, Joerg
    Wilde, Andreas
    Naab, Karl
    2008 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2008, : 122 - +
  • [5] Biological Modeling Challenges in a Multiphysics Approach
    Mathault, Jessy
    Landari, Hamza
    Tessier, Frederic
    Fortier, Paul
    Miled, Amine
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 88 - 91
  • [6] A promising approach for modeling biological fibers
    Freed, Alan D.
    Rajagopal, K. R.
    ACTA MECHANICA, 2016, 227 (06) : 1609 - 1619
  • [7] A hybrid approach to modeling biological systems
    Bernardini, Francesco
    Gheorghe, Marian
    Romero-Campero, Francisco Jose
    Walkinshaw, Neil
    MEMBRANE COMPUTING, 2007, 4860 : 138 - +
  • [8] A promising approach for modeling biological fibers
    Alan D. Freed
    K. R. Rajagopal
    Acta Mechanica, 2016, 227 : 1609 - 1619
  • [9] An integrative approach to modeling biological networks
    Memisevic, Vesna
    Milenkovic, Tijana
    Przulj, Natasa
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2010, 7 (03)
  • [10] The Langevin or Kramers approach to biological modeling
    Hadeler, KP
    Hillen, T
    Lutscher, F
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (10): : 1561 - 1583