Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio

被引:224
|
作者
Yeh, Chung-Lin [1 ]
Hsi, Hsing-Cheng [1 ]
Li, Kung-Cheh [1 ]
Hou, Chia-Hung [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Environm Engn, Taipei 10617, Taiwan
关键词
Capacitive deionization; Electrosorption; Activated carbon; Mesoporosity; Cyclic voltammeny; ELECTROSORPTION CAPACITANCE; COMPOSITE ELECTRODES; AQUEOUS-SOLUTIONS; DESALINATION; ENERGY; IONS; CLOTH; KOH; CO2;
D O I
10.1016/j.desal.2015.03.035
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To improve the desalination performance, the coconut shell-based activated carbon electrodes were prepared by using a two-stage activation method. Both the specific surface area and the ratio of mesopore to micropore can be successfully manipulated by the activation process of KOH etching plus CO2 gasification. The results showed that the activated carbon electrodes with controlled mesoporosity exhibited higher specific capacitance and better rate capability as compared to the commercial one. The coexistence of mesopores and micropores can provide large surface area for ions to form an electrical double layer, while the enlarged mesoporosity can not only facilitate the ion transport but also improve the accessible surface area, suggesting the improved capacity of capacitive ion storage. From the desalination experiments at 1.0 V, the activated carbon electrode, associated with a specific surface area of 2105 m(2) g(-1) and a 70.7% ratio of mesopore to total pore volume, presented an electrosorption capacity of 9.72 mg g(-1) and electrosorption rate constant of 0.060 min(-1), which were considerably higher than the micropore-dominant carbon electrodes. Therefore, the significantly improved desalination performance can be ascribed to the high surface area and the high ratio of mesoporosity in the activated carbon-based capacitive deionization. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 68
页数:9
相关论文
共 50 条
  • [11] Relation between operating parameters and desalination performance of capacitive deionization with activated carbon electrodes
    Liu, Danyang
    Huang, Kuan
    Xie, Leijie
    Tang, Hao L.
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2015, 1 (04) : 516 - 522
  • [12] Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications
    Sufiani, Omani
    Elisadiki, Joyce
    Machunda, Revocatus L.
    Jande, Yusufu A. C.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 848
  • [13] Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology
    Nadakatti, Suresh
    Tendulkar, Mahesh
    Kadam, Manoj
    DESALINATION, 2011, 268 (1-3) : 182 - 188
  • [14] Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction
    Hossein D. Atoufi
    Hasti Hasheminejad
    David J. Lampert
    Frontiers of Environmental Science & Engineering, 2020, 14
  • [15] Utilization of peanut shells for the fabrication of high-performance activated carbon electrodes in capacitive deionization
    Yan, Haoran
    Deng, Miao
    Qu, Ke
    Li, Qianlan
    Huan, Caijuan
    Xiong, Weiwei
    Wu, Jinchi
    Luo, Boyu
    Xiong, Weibo
    IONICS, 2023, 29 (12) : 5111 - 5122
  • [16] Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes
    Wang Xiaobing
    Liu Jinqiu
    Liu Yang
    Li Sen
    Li Dong
    Ma Tingting
    Jin An
    Hu Yanshe
    Guan Fengwei
    Water, Air, & Soil Pollution, 2021, 232
  • [17] Utilization of peanut shells for the fabrication of high-performance activated carbon electrodes in capacitive deionization
    Haoran Yan
    Miao Deng
    Ke Qu
    Qianlan Li
    Caijuan Huan
    Weiwei Xiong
    Jinchi Wu
    Boyu Luo
    Weibo Xiong
    Ionics, 2023, 29 : 5111 - 5122
  • [18] Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction
    Atoufi, Hossein D.
    Hasheminejad, Hasti
    Lampert, David J.
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2020, 14 (06)
  • [19] Ultrafast capacitive deionization using rice husk activated carbon electrodes
    Silva, Alessandra P.
    Argondizo, Alexandre
    Juchen, Patricia T.
    Ruotolo, Luís A.M.
    Silva, Alessandra P. (alessandra.silva@unifesp.br), 1600, Elsevier B.V. (271):
  • [20] Functionalized Graphene/Activated Carbon Composite Electrodes for Asymmetric Capacitive Deionization
    Lu Miao
    Liu Jian-Yun
    Cheng Jian
    Wang Shi-Ping
    Yang Jian-Mao
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (12) : 2263 - 2271