Wave operators to a quadratic nonlinear Klein-Gordon equation in two space dimensions revisited

被引:1
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
Tonegawa, Satoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[3] Nihon Univ, Dept Math, Coll Sci & Technol, Tokyo 1018308, Japan
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2012年 / 63卷 / 04期
关键词
Nonlinear Klein-Gordon equations; Quadratic nonlinearity; Two space dimensions; GLOBAL EXISTENCE;
D O I
10.1007/s00033-011-0183-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue to study the existence of the wave operators for the nonlinear Klein-Gordon equation with quadratic nonlinearity in two space dimensions (partial derivative(2)(t) - Delta + m())(2)u = lambda u(2), (t, x) is an element of R x R-2. We prove that if u(1)(+) is an element of H-3/2+3 gamma,H-1 (R-2), u(2)(+) is an element of H-1/2+3 gamma,H-1 (R-2), where gamma is an element of (0, 1/4) and the norm parallel to u(1)(+)parallel to(H13/2+gamma) + parallel to u(2)(+)parallel to(H11/2+gamma) <= rho, then there exist rho > 0 and T > 1 such that the nonlinear Klein-Gordon equation has a unique global solution u is an element of C([T, infinity); H-1/2 (R-2)) satisfying the asymptotics parallel to u(t) - u(0)(t)parallel to(H1/2) <= Ct-1/2-gamma for all t > T, where u (0) denotes the solution of the free Klein-Gordon equation.
引用
收藏
页码:655 / 673
页数:19
相关论文
共 50 条
[41]   Asymptotic behavior in time of solutions to complex-valued nonlinear Klein-Gordon equation in one space dimension [J].
Segata, Jun-ichi .
HOKKAIDO MATHEMATICAL JOURNAL, 2021, 50 (02) :187-205
[42]   On the absence of weak solutions for a sequential time-fractional Klein-Gordon equation with quadratic nonlinearity [J].
Agarwal, Praveen ;
Jleli, Mohamed ;
Samet, Bessem .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
[43]   Lifespan estimates for the semi-linear Klein-Gordon equation with a quadratic potential in dimension one [J].
Zhang, Qidi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (12) :6982-6999
[44]   Sub-exponentially long timescale stability for nonlinear Klein-Gordon equation with potential [J].
Cong, Hongzi ;
Ding, Wanran ;
Li, Siming ;
Wang, Peizhen .
JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
[45]   Energy asymptotics for the strongly damped Klein-Gordon equation [J].
Mohamad, Haidar .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (06)
[46]   Strichartz Estimate and Nonlinear Klein–Gordon Equation on Nontrapping Scattering Space [J].
Junyong Zhang ;
Jiqiang Zheng .
The Journal of Geometric Analysis, 2019, 29 :2957-2984
[47]   Asymptotic Decomposition for Nonlinear Damped Klein-Gordon Equations [J].
Li, Ze ;
Zhao, Lifeng .
JOURNAL OF MATHEMATICAL STUDY, 2020, 53 (03) :329-352
[48]   STABILITY OF A WAVE AND KLEIN-GORDON SYSTEM WITH MIXED COUPLING [J].
Dong, Shijie .
TOHOKU MATHEMATICAL JOURNAL, 2024, 76 (04) :609-628
[49]   Stability of solitary waves in nonlinear Klein-Gordon equations [J].
Raban, Pablo ;
Alvarez-Nodarse, Renato ;
Quintero, Niurka R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (46)
[50]   Partial Normal Form for the Semilinear Klein-Gordon Equation with Quadratic Potentials and Algebraic Non-resonant [J].
Brun, Pierre .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (03) :2641-2675