Wave operators to a quadratic nonlinear Klein-Gordon equation in two space dimensions revisited

被引:1
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
Tonegawa, Satoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[3] Nihon Univ, Dept Math, Coll Sci & Technol, Tokyo 1018308, Japan
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2012年 / 63卷 / 04期
关键词
Nonlinear Klein-Gordon equations; Quadratic nonlinearity; Two space dimensions; GLOBAL EXISTENCE;
D O I
10.1007/s00033-011-0183-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue to study the existence of the wave operators for the nonlinear Klein-Gordon equation with quadratic nonlinearity in two space dimensions (partial derivative(2)(t) - Delta + m())(2)u = lambda u(2), (t, x) is an element of R x R-2. We prove that if u(1)(+) is an element of H-3/2+3 gamma,H-1 (R-2), u(2)(+) is an element of H-1/2+3 gamma,H-1 (R-2), where gamma is an element of (0, 1/4) and the norm parallel to u(1)(+)parallel to(H13/2+gamma) + parallel to u(2)(+)parallel to(H11/2+gamma) <= rho, then there exist rho > 0 and T > 1 such that the nonlinear Klein-Gordon equation has a unique global solution u is an element of C([T, infinity); H-1/2 (R-2)) satisfying the asymptotics parallel to u(t) - u(0)(t)parallel to(H1/2) <= Ct-1/2-gamma for all t > T, where u (0) denotes the solution of the free Klein-Gordon equation.
引用
收藏
页码:655 / 673
页数:19
相关论文
共 50 条
[31]   Global existence and asymptotics behavior of solutions for a resonant klein-gordon system in two space dimensions [J].
Xue, RY ;
Fang, DY .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (01) :89-104
[32]   GLOBAL EXISTENCE AND ASYMPTOTICS BEHAVIOR OF SOLUTIONS FOR A RESONANT KLEIN-GORDON SYSTEM IN TWO SPACE DIMENSIONS [J].
XUE RUYING FANG DAOYUAN Department of Mathematics Zhejiang University Hangzhou China Department of Mathematics Zhejiang University Hangzhou China .
Chinese Annals of Mathematics, 2005, (01) :89-104
[33]   Continuous dependence of solutions to the strongly damped nonlinear Klein-Gordon equation [J].
Gur, Sevket ;
Uysal, Mesude Elif .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) :904-910
[34]   Global existence for the semi-linear wave/Klein-Gordon equation associated to the harmonic oscillator in low dimensions [J].
Xue, Lingyun ;
Zhang, Qidi .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (04)
[35]   Global existence for coupled systems of nonlinear wave and Klein–Gordon equations in three space dimensions [J].
Soichiro Katayama .
Mathematische Zeitschrift, 2012, 270 :487-513
[36]   Breather solutions of the cubic Klein-Gordon equation [J].
Scheider, Dominic .
NONLINEARITY, 2020, 33 (12) :7140-7166
[37]   GLOBAL BEHAVIOR OF THE SOLUTIONS TO NONLINEAR KLEIN-GORDON EQUATION WITH CRITICAL INITIAL ENERGY [J].
Dimova, Milena ;
Kolkovska, Natalia ;
Kutev, Nikolai .
ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02) :671-689
[38]   SCATTERING OPERATOR FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) :771-781
[39]   UNIFORM ERROR BOUNDS OF AN EXPONENTIAL WAVE INTEGRATOR FOR THE LONG-TIME DYNAMICS OF THE NONLINEAR KLEIN-GORDON EQUATION [J].
Feng, Yue ;
Yi, Wenfan .
MULTISCALE MODELING & SIMULATION, 2021, 19 (03) :1212-1235
[40]   Simple non-linear Klein-Gordon equations in two space dimensions, with long-range scattering [J].
Taflin, Erik .
LETTERS IN MATHEMATICAL PHYSICS, 2007, 79 (02) :175-192