Wave operators to a quadratic nonlinear Klein-Gordon equation in two space dimensions revisited

被引:1
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
Tonegawa, Satoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[3] Nihon Univ, Dept Math, Coll Sci & Technol, Tokyo 1018308, Japan
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2012年 / 63卷 / 04期
关键词
Nonlinear Klein-Gordon equations; Quadratic nonlinearity; Two space dimensions; GLOBAL EXISTENCE;
D O I
10.1007/s00033-011-0183-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue to study the existence of the wave operators for the nonlinear Klein-Gordon equation with quadratic nonlinearity in two space dimensions (partial derivative(2)(t) - Delta + m())(2)u = lambda u(2), (t, x) is an element of R x R-2. We prove that if u(1)(+) is an element of H-3/2+3 gamma,H-1 (R-2), u(2)(+) is an element of H-1/2+3 gamma,H-1 (R-2), where gamma is an element of (0, 1/4) and the norm parallel to u(1)(+)parallel to(H13/2+gamma) + parallel to u(2)(+)parallel to(H11/2+gamma) <= rho, then there exist rho > 0 and T > 1 such that the nonlinear Klein-Gordon equation has a unique global solution u is an element of C([T, infinity); H-1/2 (R-2)) satisfying the asymptotics parallel to u(t) - u(0)(t)parallel to(H1/2) <= Ct-1/2-gamma for all t > T, where u (0) denotes the solution of the free Klein-Gordon equation.
引用
收藏
页码:655 / 673
页数:19
相关论文
共 50 条
[21]   On the standing wave in coupled fractional Klein-Gordon equation [J].
Guo, Zhenyu ;
Zhang, Xin .
GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (03) :405-421
[22]   On the Existence of Global Solutions for a Nonlinear Klein-Gordon Equation [J].
Polat, Necat ;
Taskesen, Hatice .
FILOMAT, 2014, 28 (05) :1073-1079
[23]   Global Existence and Blowup for the Cubic Nonlinear Klein-Gordon Equations in Three Space Dimensions [J].
Zhang, Jian ;
Gan, Zaihui ;
Guo, Boling .
ADVANCED NONLINEAR STUDIES, 2010, 10 (02) :315-329
[24]   Global existence for nonlinear Klein-Gordon equations in infinite homogeneous waveguides in two dimensions [J].
Fang, Daoyuan ;
Tong, Changqing ;
Zhong, Sijia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) :21-37
[25]   A Remark on Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation [J].
Hans Lindblad ;
Avy Soffer .
Letters in Mathematical Physics, 2005, 73 :249-258
[26]   A NEKHOROSHEV TYPE THEOREM FOR THE NONLINEAR KLEIN-GORDON EQUATION WITH POTENTIAL [J].
Pasquali, Stefano .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09) :3573-3594
[27]   Final state problem for the cubic nonlinear Klein-Gordon equation [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[28]   A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation [J].
Lindblad, H ;
Soffer, A .
LETTERS IN MATHEMATICAL PHYSICS, 2005, 73 (03) :249-258
[29]   MODIFIED SCATTERING FOR THE KLEIN-GORDON EQUATION WITH THE CRITICAL NONLINEARITY IN THREE DIMENSIONS [J].
Masaki, Satoshi ;
Segata, Jun-ichi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (04) :1595-1611
[30]   Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system [J].
Ohta, Masahito ;
Todorova, Grozdena .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) :1912-1931