OPTIMIZATION METHODS ON RIEMANNIAN MANIFOLDS AND THEIR APPLICATION TO SHAPE SPACE

被引:206
作者
Ring, Wolfgang [1 ]
Wirth, Benedikt [2 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
奥地利科学基金会;
关键词
Riemannian optimization; BFGS quasi-Newton; Fletcher-Reeves conjugate gradient; shape space;
D O I
10.1137/11082885X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the scope of analysis for linesearch optimization algorithms on (possibly infinite-dimensional) Riemannian manifolds to the convergence analysis of the BFGS quasi-Newton scheme and the Fletcher-Reeves conjugate gradient iteration. Numerical implementations for exemplary problems in shape spaces show the practical applicability of these methods.
引用
收藏
页码:596 / 627
页数:32
相关论文
共 26 条
[1]   Trust-region methods on Riemannian manifolds [J].
Absil, P-A. ;
Baker, C. G. ;
Gallivan, K. A. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (03) :303-330
[2]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[3]   Newton's method on Riemannian manifolds and a geometric model for the human spine [J].
Adler, RL ;
Dedieu, JP ;
Margulies, JY ;
Martens, M ;
Shub, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) :359-390
[4]  
[Anonymous], 2010, Recent advances in optimization and its applications in engineering, DOI DOI 10.1007/978-3-642-12598-0_12
[5]  
[Anonymous], 2005, MATH SURVEYS MONOGRA, DOI DOI 10.1090/SURV/120
[6]  
[Anonymous], 1994, MATH ITS APPL
[7]   An implicit trust-region method on Riemannian manifolds [J].
Baker, C. G. ;
Absil, P. -A. ;
Gallivan, K. A. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) :665-689
[8]  
BAKER CG, 2008, THESIS FLORIDA STATE
[9]  
Brace I., 2006, P 17 INT S MATH THEO, P1735
[10]   Active contours without edges [J].
Chan, TF ;
Vese, LA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) :266-277