Bayesian regularization and nonnegative deconvolution for room impulse response estimation

被引:38
|
作者
Lin, YQ [1 ]
Lee, DD [1 ]
机构
[1] Univ Penn, Grasp Lab, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
bayesian regularization; echo cancellation; non-negative deconvolution; time-delay estimation;
D O I
10.1109/TSP.2005.863030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes Bayesian Regularization And Nonnegative Deconvolution (BRAND) for accurately and robustly estimating acoustic room impulse responses for applications such as time-delay estimation and echo cancellation. Similar to conventional deconvolution methods, BRAND estimates the coefficients of convolutive finite-impulse-response (FIR) filters using least-square optimization. However, BRAND exploits the nonnegative, sparse structure of acoustic room impulse responses with nonnegativity constraints and L-1-norm sparsity regularization on the filter coefficients. The optimization problem is modeled within the context of a probabilistic Bayesian framework, and expectation-maximization (EM) is used to derive efficient update rules for estimating the optimal regularization parameters. BRAND is demonstrated on two representative examples, subsample time-delay estimation in reverberant environments and acoustic echo cancellation. The results presented in this paper show the advantages of BRAND in high temporal resolution and robustness to ambient noise compared with other conventional techniques.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 50 条
  • [41] MAXIMUM A POSTERIORI ESTIMATION OF ROOM IMPULSE RESPONSES
    Florencio, Dinei
    Zhang, Zhengyou
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 728 - 732
  • [42] Sparse Bayesian blind image deconvolution with parameter estimation
    Bruno Amizic
    Rafael Molina
    Aggelos K Katsaggelos
    EURASIP Journal on Image and Video Processing, 2012
  • [43] Informed Source Location and DOA Estimation Using Acoustic Room Impulse Response Parameters
    Pasha, Shahab
    Ritz, Christian
    2015 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2015, : 139 - 144
  • [44] Sparse Bayesian blind image deconvolution with parameter estimation
    Amizic, Bruno
    Molina, Rafael
    Katsaggelos, Aggelos K.
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2012,
  • [45] SPARSE BAYESIAN BLIND IMAGE DECONVOLUTION WITH PARAMETER ESTIMATION
    Amizic, Bruno
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 626 - 630
  • [46] Bayesian Deconvolution of Scanning Electron Microscopy Images Using Point-spread Function Estimation and Non-local Regularization
    Roels, Joris
    Aelterman, Jan
    De Vylder, Jonas
    Hiep Luong
    Saeys, Yvan
    Philips, Wilfried
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 443 - 447
  • [47] A CLASS OF TRANSFER-FUNCTIONS WITH NONNEGATIVE IMPULSE-RESPONSE
    JAYASURIYA, S
    FRANCHEK, MA
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1991, 113 (02): : 313 - 315
  • [48] Frequency Domain Limitations in the Design of Nonnegative Impulse Response Filters
    Liu, Yuzhe
    Bauer, Peter H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (09) : 4535 - 4546
  • [49] Room Impulse Response Reconstruction Using Pattern-Coupled Sparse Bayesian Learning With Spherical Waves
    Feng, Xuelei
    Cheng, Jiazheng
    Chen, Simiao
    Shen, Yong
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1925 - 1929
  • [50] Regularization Parameter Estimation for Non-Negative Hyperspectral Image Deconvolution
    Song, Yingying
    Brie, David
    Djermoune, El-Hadi
    Henrot, Simon
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5316 - 5330