Bayesian regularization and nonnegative deconvolution for room impulse response estimation

被引:38
|
作者
Lin, YQ [1 ]
Lee, DD [1 ]
机构
[1] Univ Penn, Grasp Lab, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
bayesian regularization; echo cancellation; non-negative deconvolution; time-delay estimation;
D O I
10.1109/TSP.2005.863030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes Bayesian Regularization And Nonnegative Deconvolution (BRAND) for accurately and robustly estimating acoustic room impulse responses for applications such as time-delay estimation and echo cancellation. Similar to conventional deconvolution methods, BRAND estimates the coefficients of convolutive finite-impulse-response (FIR) filters using least-square optimization. However, BRAND exploits the nonnegative, sparse structure of acoustic room impulse responses with nonnegativity constraints and L-1-norm sparsity regularization on the filter coefficients. The optimization problem is modeled within the context of a probabilistic Bayesian framework, and expectation-maximization (EM) is used to derive efficient update rules for estimating the optimal regularization parameters. BRAND is demonstrated on two representative examples, subsample time-delay estimation in reverberant environments and acoustic echo cancellation. The results presented in this paper show the advantages of BRAND in high temporal resolution and robustness to ambient noise compared with other conventional techniques.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 50 条
  • [21] Tuning the hyperparameters of the filter-based regularization method for impulse response estimation
    Marconato, Anna
    Schoukens, Maarten
    IFAC PAPERSONLINE, 2017, 50 (01): : 12841 - 12846
  • [22] ROOM GEOMETRY ESTIMATION FROM A SINGLE CHANNEL ACOUSTIC IMPULSE RESPONSE
    Moore, Alastair H.
    Brookes, Mike
    Naylor, Patrick A.
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [23] Spatio-Temporal Bayesian Regression for Room Impulse Response Reconstruction With Spherical Waves
    Caviedes-Nozal, Diego
    Fernandez-Grande, Efren
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 3263 - 3277
  • [24] Design of finite impulse response deconvolution filters
    Vollmerhausen, Richard
    APPLIED OPTICS, 2010, 49 (30) : 5814 - 5827
  • [25] Deconvolution and Correlation to Obtain the Impulse Response.
    Poulain, Andre
    Toulotte, Jean Marc
    Le Nouvel automatisme, 1980, 25 (12): : 43 - 50
  • [26] INSTRUMENT PARAMETER ESTIMATION IN BAYESIAN CONVEX DECONVOLUTION
    Orieux, F.
    Rodet, T.
    Giovannelli, J. -F.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1161 - 1164
  • [27] DYNAMIC RELATIVE IMPULSE RESPONSE ESTIMATION USING STRUCTURED SPARSE BAYESIAN LEARNING
    Giri, Ritwik
    Rao, Bhaskar D.
    Mustiere, Fred
    Zhang, Tao
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 514 - 518
  • [28] ROOM IMPULSE RESPONSE ESTIMATION USING PERFECT SEQUENCES FOR LEGENDRE NONLINEAR FILTERS
    Carini, Alberto
    Cecchi, Stefania
    Romoli, Laura
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2541 - 2545
  • [29] Automated estimation of the truncation of room impulse response by applying a nonlinear decay model
    Jankovic, Marko
    Ciric, Dejan G.
    Pantic, Aleksandar
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (03): : 1047 - 1057
  • [30] ROOM IMPULSE RESPONSE ESTIMATION BY ITERATIVE WEIGHTED L1-NORM
    Crocco, Marco
    Del Bue, Alessio
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1895 - 1899